14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells

      , ,
      Molecular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chlamydiae are obligate intracellular bacteria which occupy a non-acidified vacuole (the inclusion) throughout their developmental cycle. Little is known about events leading to the establishment and maintenance of the chlamydial inclusion membrane. To identify chlamydial proteins which are unique to the intracellular phase of the life cycle, an expression library of Chlamydia psittaci DNA was screened with convalescent antisera from infected animals and hyperimmune antisera generated against formalin-killed purified chlamydiae. Overlapping genomic clones were identified which expressed a 39 kDa protein only recognized by the convalescent sera. Sequence analysis of the clones identified two open reading frames (ORFs), one of which (ORF1) coded for a predicted 39 kDa gene product. The ORF1 sequence was amplified and fused to the malE gene of Escherichia coli and antisera were raised against the resulting fusion protein. Immunoblotting with these antisera demonstrated that the 39 kDa protein was present in lysates of infected cells and in reticulate bodies (RBs), but was at the limit of detection in lysates of purified C. psittaci elementary bodies. Fluorescence microscopy experiments demonstrated that this protein was localized in the inclusion membrane of infected HeLa cells, but was not detected on the developmental forms within the inclusion. Because the protein produced by ORF1 is deposited on the inclusion membrane of infected cells, this gene has been designated incA, (inclusion membrane protein A) and its gene product, IncA. In addition to the inclusion membrane, these antisera labelled structures that extended from the inclusion over the nucleus or into the cytoplasm of infected cells. Immunoblotting also demonstrated that IncA, in lysates of infected cells, had a migration pattern that seemed indicative of post-translational modification. This pattern was not observed in immunoblots of RBs or in the E. coli expressing IncA. Collectively, these data identify a chlamydial gene which codes for a protein that is released from RB and is localized in the inclusion membrane of infected cells.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Empirical predictions of protein conformation.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interaction of chlamydiae and host cells in vitro.

            The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells.

              Movement of Listeria monocytogenes within infected eukaryotic cells provides a simple model system to study the mechanism of actin-based motility in nonmuscle cells. The actA gene of L. monocytogenes is required to induce the polymerization of host actin filaments [Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H. & Cossart, P. (1990) Cell 68, 521-531; Domann, E., Wehland, J., Rohde, M., Pistor, S., Hartl, M., Goebel, W., Leimeister-Wachter, M., Wuenscher, M. & Chakraborty, T. (1992) EMBO J. 11, 1981-1990]. In this study, an in-frame deletion mutation within the actA gene was constructed and introduced into the L. monocytogenes chromosome by allelic exchange. This mutation resulted in a decrease (3 orders of magnitude) in virulence for mice. In tissue culture cells, the actA mutant was absolutely defective for the nucleation of actin filaments and consequently was impaired in cell-to-cell spread. Antiserum raised to a synthetic peptide encompassing the proline-rich repeat (DFPPPPTDEEL) of ActA was used to characterize the expression of the ActA protein. The ActA protein derived from extracellular bacteria migrated as a 97-kDa polypeptide upon SDS/PAGE, whereas the protein from infected cells migrated as three distinct polypeptides, one that comigrated with the 97-kDa extracellular form and two slightly larger species. Treatment of infected cells with okadaic acid resulted in decreased amounts of all forms of ActA and the appearance of a larger species of ActA. Phosphatase treatment of ActA immunoprecipitated from intracellular bacteria resulted in conversion of the larger two species to the 97-kDa form. Labeling of infected cells with 32Pi followed by immunoprecipitation showed that the largest molecular form of ActA was phosphorylated. Taken together, these data indicate that ActA is phosphorylated during intracellular growth. The significance of the intracellular modification of ActA is not known, but we speculate that it may modulate the intracellular activity of ActA.
                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Wiley
                0950382X
                13652958
                February 1995
                October 27 2006
                : 15
                : 4
                : 617-626
                Article
                10.1111/j.1365-2958.1995.tb02371.x
                7783634
                279ff721-1727-4e38-81aa-49d675620844
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article