1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Physiological factors determining downhill vs uphill running endurance performance

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Peak treadmill running velocity during the VO2 max test predicts running performance.

          Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ground reaction forces during downhill and uphill running.

            We investigated the normal and parallel ground reaction forces during downhill and uphill running. Our rationale was that these force data would aid in the understanding of hill running injuries and energetics. Based on a simple spring-mass model, we hypothesized that the normal force peaks, both impact and active, would increase during downhill running and decrease during uphill running. We anticipated that the parallel braking force peaks would increase during downhill running and the parallel propulsive force peaks would increase during uphill running. But, we could not predict the magnitude of these changes. Five male and five female subjects ran at 3m/s on a force treadmill mounted on the level and on 3 degrees, 6 degrees, and 9 degrees wedges. During downhill running, normal impact force peaks and parallel braking force peaks were larger compared to the level. At -9 degrees, the normal impact force peaks increased by 54%, and the parallel braking force peaks increased by 73%. During uphill running, normal impact force peaks were smaller and parallel propulsive force peaks were larger compared to the level. At +9 degrees, normal impact force peaks were absent, and parallel propulsive peaks increased by 75%. Neither downhill nor uphill running affected normal active force peaks. Combined with previous biomechanics studies, our normal impact force data suggest that downhill running substantially increases the probability of overuse running injury. Our parallel force data provide insight into past energetic studies, which show that the metabolic cost increases during downhill running at steep angles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eccentric exercise: mechanisms and effects when used as training regime or training adjunct.

              The aim of the current review is to discuss applications and mechanism of eccentric exercise in training regimes of competitive sports. Eccentric muscle work is important in most sports. Eccentric muscle contractions enhance the performance during the concentric phase of stretch-shortening cycles, which is important in disciplines like sprinting, jumping, throwing, and running. Muscles activated during lengthening movements can also function as shock absorbers, to decelerate during landing tasks or to precisely deal with high external loading in sports like alpine skiing. The few studies available on trained subjects reveal that eccentric training can further enhance maximal muscle strength and power. It can further optimize muscle length for maximal tension development at a greater degree of extension, and has potential to improve muscle coordination during eccentric tasks. In skeletal muscles, these functional adaptations are based on increases in muscle mass, fascicle length, number of sarcomeres, and cross-sectional area of type II fibers. Identified modalities for eccentric loading in athletic populations involve classical isotonic exercises, accentuated jumping exercises, eccentric overloading exercises, and eccentric cycle ergometry. We conclude that eccentric exercise offers a promising training modality to enhance performance and to prevent injuries in athletes. However, further research is necessary to better understand how the neuromuscular system adapts to eccentric loading in athletes.
                Bookmark

                Author and article information

                Journal
                Journal of Science and Medicine in Sport
                Journal of Science and Medicine in Sport
                Elsevier BV
                14402440
                January 2021
                January 2021
                : 24
                : 1
                : 85-91
                Article
                10.1016/j.jsams.2020.06.004
                27a7d3ee-8302-41aa-9757-168f8b21ad3f
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article