32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring the Free Energy Landscape: From Dynamics to Networks and Back

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowledge of the Free Energy Landscape topology is the essential key to understanding many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers there are, what the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times and rate constants, or hierarchical relationships among basins, completes the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.

          Author Summary

          A complete description of complex polymers, such as proteins, includes information about their structure and their dynamics. In particular it is of utmost importance to answer the following questions: What are the structural conformations possible? Is there any relevant hierarchy among these conformers? What are the transition paths between them? These and other questions can be addressed by analyzing in an efficient way the Free Energy Landscape of the system. With this knowledge, several problems about biomolecular reactions (such as enzymatic activity, protein folding, protein deposition diseases, etc.) can be tackled. In this article we show how to efficiently describe the Free Energy Landscape for small and large peptides. By mapping the trajectories of molecular dynamics simulations into a graph (the Conformational Markov Network) and unveiling its structural organization, we obtain a coarse grained description of the protein dynamics across the Free Energy Landscape in terms of the relevant kinetic magnitudes of the system. Therefore, we show the way to bridge the gap between the microscopic dynamics and the macroscopic kinetics by means of a mesoscopic description of the associated Conformational Markov Network. Along this path the compromise between the physical nature of the process and the magnitudes that characterize the network is carefully kept to assure the reliability of the results shown.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics.

          To meet the challenge of modeling the conformational dynamics of biological macromolecules over long time scales, much recent effort has been devoted to constructing stochastic kinetic models, often in the form of discrete-state Markov models, from short molecular dynamics simulations. To construct useful models that faithfully represent dynamics at the time scales of interest, it is necessary to decompose configuration space into a set of kinetically metastable states. Previous attempts to define these states have relied upon either prior knowledge of the slow degrees of freedom or on the application of conformational clustering techniques which assume that conformationally distinct clusters are also kinetically distinct. Here, we present a first version of an automatic algorithm for the discovery of kinetically metastable states that is generally applicable to solvated macromolecules. Given molecular dynamics trajectories initiated from a well-defined starting distribution, the algorithm discovers long lived, kinetically metastable states through successive iterations of partitioning and aggregating conformation space into kinetically related regions. The authors apply this method to three peptides in explicit solvent-terminally blocked alanine, the 21-residue helical F(s) peptide, and the engineered 12-residue beta-hairpin trpzip2-to assess its ability to generate physically meaningful states and faithful kinetic models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coarse master equations for peptide folding dynamics.

            We construct coarse master equations for peptide folding dynamics from atomistic molecular dynamics simulations. A maximum-likelihood propagator-based method allows us to extract accurate rates for the transitions between the different conformational states of the small helix-forming peptide Ala5. Assigning the conformational states by using transition paths instead of instantaneous molecular coordinates suppresses the effects of fast non-Markovian dynamics. The resulting master equations are validated by comparing their analytical correlation functions with those obtained directly from the molecular dynamics simulations. We find that the master equations properly capture the character and relaxation times of the entire spectrum of conformational relaxation processes. By using the eigenvectors of the transition rate matrix, we are able to systematically coarse-grain the system. We find that a two-state description, with a folded and an unfolded state, roughly captures the slow conformational dynamics. A four-state model, with two folded and two unfolded states, accurately recovers the three slowest relaxation process with time scales between 1.5 and 7 ns. The master equation models not only give access to the slow conformational dynamics but also shed light on the molecular mechanisms of the helix-coil transition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transition networks for modeling the kinetics of conformational change in macromolecules.

              The kinetics and thermodynamics of complex transitions in biomolecules can be modeled in terms of a network of transitions between the relevant conformational substates. Such a transition network, which overcomes the fundamental limitations of reaction-coordinate-based methods, can be constructed either based on the features of the energy landscape, or from molecular dynamics simulations. Energy-landscape-based networks are generated with the aid of automated path-optimization methods, and, using graph-theoretical adaptive methods, can now be constructed for large molecules such as proteins. Dynamics-based networks, also called Markov State Models, can be interpreted and adaptively improved using statistical concepts, such as the mean first passage time, reactive flux and sampling error analysis. This makes transition networks powerful tools for understanding large-scale conformational changes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                June 2009
                June 2009
                26 June 2009
                : 5
                : 6
                : e1000415
                Affiliations
                [1 ]Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
                [2 ]Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
                [3 ]Departamento de Matemática Aplicada, ESCET, Universidad Rey Juan Carlos, Móstoles (Madrid), Spain
                [4 ]Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza, Spain
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: DPG JGG PE FF. Performed the experiments: DPG JGG. Analyzed the data: DPG JGG. Contributed reagents/materials/analysis tools: DPG JGG. Wrote the paper: DPG JGG PE FF.

                Article
                08-PLCB-RA-1140R2
                10.1371/journal.pcbi.1000415
                2694367
                19557191
                27a92c18-6ecd-45df-9a5f-a58811c2d6d7
                Prada-Gracia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 December 2008
                : 13 May 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Biophysics/Protein Folding
                Biophysics/Theory and Simulation
                Computational Biology/Macromolecular Structure Analysis
                Computational Biology/Molecular Dynamics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article