Blog
About

12
views
0
recommends
+1 Recommend
1 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Pneumocystis jirovecii colonization in patients with chronic pulmonary diseases in the People’s Republic of China

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The detection of Pneumocystis jirovecii DNA in respiratory specimen from individuals who do not have signs or symptoms of pneumonia has been defined as colonization. The role of P. jirovecii colonization in the development or progression of various lung diseases has been reported, but little information about P. jirovecii colonization in patients is available in the People’s Republic of China.

          Objective

          To determine the prevalence of P. jirovecii colonization in patients with various pulmonary diseases, including the acute and stable stage of COPD, interstitial lung diseases, cystic fibrosis, and chronic bronchiectasis.

          Materials and methods

          A loop-mediated isothermal amplification (LAMP) and a conventional polymerase chain reaction (PCR) method for detecting P. jirovecii were developed. Ninety-eight HIV-negative patients who were followed-up and who had undergone bronchoscopy for diagnosis of various underlying respiratory diseases were included in the study. Sputa of these patients were analyzed with LAMP amplification of P. jirovecii gene. In addition, conventional PCR, Giemsa and Gomori’s methenamine silver nitrate staining assays were applied to all specimens.

          Results

          The sensitivity and specificity test showed that there was no cross-reaction with other fungi or bacteria in detecting the specific gene of P. jirovecii by LAMP, and the minimum detection limits by LAMP was 50 copies/mL. P. jirovecii DNA was detected in 62 of 98 (63.3%) sputa specimens by LAMP assay and 22.45% (22/98) by conventional PCR. However, no P. jirovecii cysts were found by Giemsa and Gomori’s methenamine silver nitrate in all of gene-positive specimens.

          Conclusion

          The results of our study showed that prevalence of P. jirovecii colonization is particularly high in patients with chronic pulmonary diseases in the People’s Republic of China, and the LAMP method is better for evaluation of the colonization of P. jirovecii in sputum specimen than conventional PCR.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Colonization by Pneumocystis jirovecii and its role in disease.

          Although the incidence of Pneumocystis pneumonia (PCP) has decreased since the introduction of combination antiretroviral therapy, it remains an important cause of disease in both HIV-infected and non-HIV-infected immunosuppressed populations. The epidemiology of PCP has shifted over the course of the HIV epidemic both from changes in HIV and PCP treatment and prevention and from changes in critical care medicine. Although less common in non-HIV-infected immunosuppressed patients, PCP is now more frequently seen due to the increasing numbers of organ transplants and development of novel immunotherapies. New diagnostic and treatment modalities are under investigation. The immune response is critical in preventing this disease but also results in lung damage, and future work may offer potential areas for vaccine development or immunomodulatory therapy. Colonization with Pneumocystis is an area of increasing clinical and research interest and may be important in development of lung diseases such as chronic obstructive pulmonary disease. In this review, we discuss current clinical and research topics in the study of Pneumocystis and highlight areas for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review.

            Diagnosis is an important part in case of animal husbandry as treatment of a disease depends on it. Advancement in molecular biology has generated various sophisticated tools like Polymerase Chain Reaction (PCR), its versions along with pen-side diagnostic techniques. Every diagnostic test however has both advantages and disadvantages; PCR is not an exception to this statement. To ease the odds faced by PCR several non-PCR techniques which can amplify DNA at a constant temperature has become the need of hour, thus generating a variety of isothermal amplification techniques including Nucleic Acid Sequence-Based Amplification (NASBA) along with Self-Sustained Sequence Replication (3SR) and Strand Displacement Amplification (SDA) and Loop mediated isothermal amplification (LAMP) test. LAMP stands out to be a good and effective diagnostic test for empowering in developing countries as it does not require sophisticated equipments and skilled personnel and proves to be cost-effective. Performance of LAMP mainly relies on crafting of six primers (including 2 loop primers) ultimately accelerating the reaction. LAMP amplifies DNA in the process pyrophosphates are formed causing turbidity that facilitates visualisation in a more effective way than PCR. The Bst and Bsm polymerase are the required enzymes for LAMP that does not possess 5'-3' exonuclease activity. Results can be visualized by adding DNA binding dye, SYBR green. LAMP is more stable than PCR and real-time PCR. Non-involvement of template DNA preparation and ability to generate 10(9) copies of DNA are added benefits that make it more effective than NASBA or 3SR and SDA. Thus, it fetches researcher's interest in developing various versions of LAMP viz., its combination with lateral flow assay or micro LAMP and more recently lyophilized and electric (e) LAMP. Availability of ready to use LAMP kits has helped diagnosis of almost all pathogens. LAMP associated technologies however needs to be developed as a part of LAMP platform rather than developing them as separate entities. This review deals with all these salient features of this newly developed tool that has enlightened the world of diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bacterial microbiome of lungs in COPD

              Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2015
                29 September 2015
                : 10
                : 2079-2085
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, People’s Republic of China
                [2 ]Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, People’s Republic of China
                [3 ]Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
                Author notes
                Correspondence: Dong-Dong Wang, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, No 36. SanHao Street, Heping District, Shenyang 100004, People’s Republic of China, Tel +86 24 2389 6615, Email wlittlepear1@ 123456163.com
                Chun-Li An, Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, No 92. Beier Load, Heping District, Shenyang 110122, People’s Republic of China, Tel +86 24 3193 9030, Email cmucl@ 123456126.com
                Article
                copd-10-2079
                10.2147/COPD.S89666
                4598221
                © 2015 Wang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article