38
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a novel mutation in the APTX gene associated with ataxia-oculomotor apraxia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hereditary ataxias are a clinically and genetically heterogeneous family of disorders defined by the inability to control gait and muscle coordination. Given the nonspecific symptoms of many hereditary ataxias, precise diagnosis relies on molecular genetic testing. To this end, we conducted whole-exome sequencing (WES) on a large consanguineous Iranian family with hereditary ataxia and oculomotor apraxia. WES in five affected and six unaffected individuals resulted in the identification of a homozygous novel stop-gain mutation in the APTX gene (c.739A>T; p.Lys247*) that segregates with the phenotype. Mutations in the APTX (OMIM 606350) gene are associated with ataxia with oculomotor apraxia type 1 (OMIM 208920).

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ataxia telangiectasia: a review

          Definition of the disease Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. Epidemiology The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. Clinical description A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. Etiology A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. Diagnosis The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene. Differential diagnosis There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing. Antenatal diagnosis Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis. Genetic counseling Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted. Management and prognosis Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hereditary ataxias: overview.

            The hereditary ataxias are a highly heterogeneous group of disorders phenotypically characterized by gait ataxia, incoordination of eye movements, speech, and hand movements, and usually associated with atrophy of the cerebellum. There are more than 35 autosomal dominant types frequently termed spinocerebellar ataxia and typically having adult onset. The most common subtypes are spinocerebellar ataxia 1, 2, 3, 6, and 7, all of which are nucleotide repeat expansion disorders. Autosomal recessive ataxias usually have onset in childhood; the most common subtypes are -Friedreich, ataxia-telangiectasia, ataxia with oculomotor apraxia type 1, and ataxia with oculomotor apraxia type 2. Four autosomal recessive types have dietary or biochemical treatment modalities (ataxia with vitamin E deficiency, cerebrotendinous xanthomatosis, Refsum, and coenzyme Q10 deficiency), whereas there are no specific treatments for other ataxias. Diagnostic genetic testing is complicated because of the large number of relatively uncommon subtypes with extensive phenotypic overlap. However, the best testing strategy is based on assessing relative frequencies, ethnic predilections, and recognition of associated phenotypic features such as seizures, visual loss, or associated movement abnormalities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin.

              The newly recognized ataxia-ocular apraxia 1 (AOA1; MIM 208920) is the most frequent cause of autosomal recessive ataxia in Japan and is second only to Friedreich ataxia in Portugal. It shares several neurological features with ataxia-telangiectasia, including early onset ataxia, oculomotor apraxia and cerebellar atrophy, but does not share its extraneurological features (immune deficiency, chromosomal instability and hypersensitivity to X-rays). AOA1 is also characterized by axonal motor neuropathy and the later decrease of serum albumin levels and elevation of total cholesterol. We have identified the gene causing AOA1 and the major Portuguese and Japanese mutations. This gene encodes a new, ubiquitously expressed protein that we named aprataxin. This protein is composed of three domains that share distant homology with the amino-terminal domain of polynucleotide kinase 3'- phosphatase (PNKP), with histidine-triad (HIT) proteins and with DNA-binding C2H2 zinc-finger proteins, respectively. PNKP is involved in DNA single-strand break repair (SSBR) following exposure to ionizing radiation and reactive oxygen species. Fragile-HIT proteins (FHIT) cleave diadenosine tetraphosphate, which is potentially produced during activation of the SSBR complex. The results suggest that aprataxin is a nuclear protein with a role in DNA repair reminiscent of the function of the protein defective in ataxia-telangiectasia, but that would cause a phenotype restricted to neurological signs when mutant.
                Bookmark

                Author and article information

                Journal
                Cold Spring Harb Mol Case Stud
                Cold Spring Harb Mol Case Stud
                cshmcs
                cshmcs
                cshmcs
                Cold Spring Harbor Molecular Case Studies
                Cold Spring Harbor Laboratory Press
                2373-2873
                November 2017
                : 3
                : 6
                : a002014
                Affiliations
                [1 ]Department of Genetics, Stanford University, Stanford, California 94305, USA;
                [2 ]Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
                [3 ]Department of Medical Genetics, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran;
                [4 ]Department of Pediatrics, Stanford University, Stanford, California 94305, USA;
                [5 ]Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;
                [6 ]Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
                Author notes
                [7]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-8393-5853
                Article
                InloraMCS002014
                10.1101/mcs.a002014
                5701303
                28652255
                27bd522d-9193-4d99-8fe9-a3c4583f5735
                © 2017 Inlora et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted reuse and redistribution provided that the original author and source are credited.

                History
                : 21 March 2017
                : 12 June 2017
                Page count
                Pages: 9
                Funding
                Funded by: National Institutes of Health (NIH) , open-funder-registry 10.13039/100000002;
                Award ID: 1P50HG00773501
                Award ID: 8U54DK10255602
                Funded by: Swiss National Science Foundation (SNSF) , open-funder-registry 10.13039/100000001;
                Award ID: P300PA_161005
                Award ID: P2GEP3_151825
                Categories
                Research Report

                apraxia,ataxia,athetosis,progressive cerebellar ataxia
                apraxia, ataxia, athetosis, progressive cerebellar ataxia

                Comments

                Comment on this article