67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperbaric oxygen treatment (HBO) promotes rapid recovery from soft tissue injuries. However, the healing mechanism is unclear. Here we assessed the effects of HBO on contused calf muscles in a rat skeletal muscle injury model. An experimental HBO chamber was developed and rats were treated with 100% oxygen, 2.5 atmospheres absolute for 2 h/day after injury. HBO reduced early lower limb volume and muscle wet weight in contused muscles, and promoted muscle isometric strength 7 days after injury. HBO suppressed the elevation of circulating macrophages in the acute phase and then accelerated macrophage invasion into the contused muscle. This environment also increased the number of proliferating and differentiating satellite cells and the amount of regenerated muscle fibers. In the early phase after injury, HBO stimulated the IL-6/STAT3 pathway in contused muscles. Our results demonstrate that HBO has a dual role in decreasing inflammation and accelerating myogenesis in muscle contusion injuries.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory interactions between muscle and the immune system during muscle regeneration.

          Recent discoveries reveal complex interactions between skeletal muscle and the immune system that regulate muscle regeneration. In this review, we evaluate evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth. Acute perturbations of muscle activate a sequence of interactions between muscle and inflammatory cells. The initial inflammatory response is a characteristic Th1 inflammatory response, first dominated by neutrophils and subsequently by CD68(+) M1 macrophages. M1 macrophages can propagate the Th1 response by releasing proinflammatory cytokines and cause further tissue damage through the release of nitric oxide. Myeloid cells in the early Th1 response stimulate the proliferative phase of myogenesis through mechanisms mediated by TNF-alpha and IL-6; experimental prolongation of their presence is associated with delayed transition to the early differentiation stage of myogenesis. Subsequent invasion by CD163(+)/CD206(+) M2 macrophages attenuates M1 populations through the release of anti-inflammatory cytokines, including IL-10. M2 macrophages play a major role in promoting growth and regeneration; their absence greatly slows muscle growth following injury or modified use and inhibits muscle differentiation and regeneration. Chronic muscle injury leads to profiles of macrophage invasion and function that differ from acute injuries. For example, mdx muscular dystrophy yields invasion of muscle by M1 macrophages, but their early invasion is accompanied by a subpopulation of M2a macrophages. M2a macrophages are IL-4 receptor(+)/CD206(+) cells that reduce cytotoxicity of M1 macrophages. Subsequent invasion of dystrophic muscle by M2c macrophages is associated with progression of the regenerative phase in pathophysiology. Together, these findings show that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammatory processes in muscle injury and repair.

            Modified muscle use or injury can produce a stereotypic inflammatory response in which neutrophils rapidly invade, followed by macrophages. This inflammatory response coincides with muscle repair, regeneration, and growth, which involve activation and proliferation of satellite cells, followed by their terminal differentiation. Recent investigations have begun to explore the relationship between inflammatory cell functions and skeletal muscle injury and repair by using genetically modified animal models, antibody depletions of specific inflammatory cell populations, or expression profiling of inflamed muscle after injury. These studies have contributed to a complex picture in which inflammatory cells promote both injury and repair, through the combined actions of free radicals, growth factors, and chemokines. In this review, recent discoveries concerning the interactions between skeletal muscle and inflammatory cells are presented. New findings clearly show a role for neutrophils in promoting muscle damage soon after muscle injury or modified use. No direct evidence is yet available to show that neutrophils play a beneficial role in muscle repair or regeneration. Macrophages have also been shown capable of promoting muscle damage in vivo and in vitro through the release of free radicals, although other findings indicate that they may also play a role in muscle repair and regeneration through growth factors and cytokine-mediated signaling. However, this role for macrophages in muscle regeneration is still not definitive; other cells present in muscle can also produce the potentially regenerative factors, and it remains to be proven whether macrophage-derived factors are essential for muscle repair or regeneration in vivo. New evidence also shows that muscle cells can release positive and negative regulators of inflammatory cell invasion, and thereby play an active role in modulating the inflammatory process. In particular, muscle-derived nitric oxide can inhibit inflammatory cell invasion of healthy muscle and protect muscle from lysis by inflammatory cells in vivo and in vitro. On the other hand, muscle-derived cytokines can signal for inflammatory cell invasion, at least in vitro. The immediate challenge for advancing our current understanding of the relationships between muscle and inflammatory cells during muscle injury and repair is to place what has been learned in vitro into the complex and dynamic in vivo environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interleukin‐6 myokine signaling in skeletal muscle: a double‐edged sword?

              Interleukin (IL)‐6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL‐6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL‐6 signaling has been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL‐6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to synthesize and release IL‐6. Paradoxically, deleterious actions for IL‐6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications.
                Bookmark

                Author and article information

                Contributors
                enomorth@tmd.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 January 2018
                22 January 2018
                2018
                : 8
                : 1288
                Affiliations
                [1 ]ISNI 0000 0001 1014 9130, GRID grid.265073.5, Department of Orthopaedic Surgery, , Tokyo Medical and Dental University, Bunkyo-ku, ; Tokyo, 113-8519 Japan
                [2 ]ISNI 0000 0001 1014 9130, GRID grid.265073.5, Hyperbaric Medical Center, Medical Hospital, , Tokyo Medical and Dental University, ; Tokyo, 113-8519 Japan
                [3 ]ISNI 0000 0001 1014 9130, GRID grid.265073.5, Sports Medicine Clinical Center, Medical Hospital, , Tokyo Medical and Dental University, Bunkyo-ku, ; Tokyo, 113-8519 Japan
                [4 ]ISNI 0000 0001 1014 9130, GRID grid.265073.5, Department of Cartilage Regeneration, , Tokyo Medical and Dental University, Bunkyo-ku, ; Tokyo, 113-8519 Japan
                [5 ]ISNI 0000 0001 1014 9130, GRID grid.265073.5, Department of Joint Surgery and Sports Medicine, , Tokyo Medical and Dental University, Bunkyo-ku, ; Tokyo, 113-8519 Japan
                [6 ]ISNI 0000 0001 1014 9130, GRID grid.265073.5, Center for Stem Cell and Regenerative Medicine, , Tokyo Medical and Dental University, Bunkyo-ku, ; Tokyo, 113-8519 Japan
                Author information
                http://orcid.org/0000-0002-6331-722X
                Article
                19670
                10.1038/s41598-018-19670-x
                5778072
                29358697
                27c674f0-4375-425d-9889-9463fa66fb60
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 September 2017
                : 4 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article