85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Outbreak of Corynebacterium pseudodiphtheriticum Infection in Cystic Fibrosis Patients, France

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Respiratory tract colonization with these bacteria may be common in this population.

          Abstract

          An increasing body of evidence indicates that nondiphtheria corynebacteria may be responsible for respiratory tract infections. We report an outbreak of Corynebacterium pseudodiphtheriticum infection in children with cystic fibrosis (CF). To identify 18 C. pseudodiphtheriticum strains isolated from 13 French children with CF, we used molecular methods (partial rpoB gene sequencing) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Clinical symptoms were exhibited by 10 children (76.9%), including cough, rhinitis, and lung exacerbations. The results of MALDI-TOF identification matched perfectly with those obtained from molecular identification. Retrospective analysis of sputum specimens by using specific real-time PCR showed that ≈20% of children with CF were colonized with these bacteria, whereas children who did not have CF had negative test results. Our study reemphasizes the conclusion that correctly identifying bacteria at the species level facilitates detection of an outbreak of new or emerging infections in humans.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

          Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lung infections associated with cystic fibrosis.

            While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial ecology of the cystic fibrosis lung.

              Understanding the microbial flora of the cystic fibrosis (CF) respiratory tract is of considerable importance, as patient morbidity and death are primarily caused by chronic respiratory infections. However, chronically colonized CF airways represent a surprisingly complex and diverse ecosystem. The precise contributions of different microbes to patient morbidity, and in particular the importance of inter-specific interactions, remain largely unelucidated. The importance of within-species genetic and phenotypic variation has similarly received limited explicit attention. While a host of studies provide data on the microbial species recovered from patients, these are often incomparable due to differences in sampling and data reporting, or do not present the data in a way that aids our understanding of the ecosystem within each patient. This review brings together a cross-section of recent research on the CF airways and the microbes which infect them. The results presented suggest that understanding the CF lung in terms of its community and evolutionary ecology could benefit our understanding of disease progression and influence treatment regimens.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                August 2010
                : 16
                : 8
                : 1231-1236
                Affiliations
                [1]Université de la Méditerranée, Marseille, France (F. Bittar, C. Cassagne, D. Raoult, J.-M. Rolain)
                [2]Hôpital Timone, Marseille (E. Bosdure, N. Stremler, J.-C. Dubus, J. Sarles)
                [3]Hôpital Sainte-Marguerite, Marseille (M. Reynaud-Gaubert)
                [1 ]These authors contributed equally to this article.
                Author notes
                Address for correspondence: Jean-Marc Rolain, Faculte de Medecine, Unité des Rickettsies, UMR 6020-IFR48, 27 Bd J Moulin, Marseille 13385, France; email: jean-marc.rolain@ 123456univmed.fr
                Article
                10-0193
                10.3201/eid1608.100193
                3298292
                20678316
                27c6cc6f-0fa5-4f3d-b219-c8201d092b5b
                History
                Categories
                Research
                Research

                Infectious disease & Microbiology
                cough,maldi-tof,bacteria,research,children,france,respiratory infections,corynebacterium pseudodiphtheriticum,intact cell mass spectrometry,cystic fibrosis

                Comments

                Comment on this article