157
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bermuda: Bidirectional de novo assembly of transcripts with new insights for handling uneven coverage

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation: RNA-seq has made feasible the analysis of a whole set of expressed mRNAs. Mapping-based assembly of RNA-seq reads sometimes is infeasible due to lack of high-quality references. However, de novo assembly is very challenging due to uneven expression levels among transcripts and also the read coverage variation within a single transcript. Existing methods either apply de Bruijn graphs of single-sized k-mers to assemble the full set of transcripts, or conduct multiple runs of assembly, but still apply graphs of single-sized k-mers at each run. However, a single k-mer size is not suitable for all the regions of the transcripts with varied coverage. Contribution: This paper presents a de novo assembler Bermuda with new insights for handling uneven coverage. Opposed to existing methods that use a single k-mer size for all the transcripts in each run of assembly, Bermuda self-adaptively uses a few k-mer sizes to assemble different regions of a single transcript according to their local coverage. As such, Bermuda can deal with uneven expression levels and coverage not only among transcripts, but also within a single transcript. Extensive tests show that Bermuda outperforms popular de novo assemblers in reconstructing unevenly-expressed transcripts with longer length, better contiguity and lower redundancy. Further, Bermuda is computationally efficient with moderate memory consumption.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Next-generation transcriptome assembly.

          Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalogue of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies - along with some perspectives on transcriptome assembly in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of novel transcripts in annotated genomes using RNA-Seq.

            We describe a new 'reference annotation based transcript assembly' problem for RNA-Seq data that involves assembling novel transcripts in the context of an existing annotation. This problem arises in the analysis of expression in model organisms, where it is desirable to leverage existing annotations for discovering novel transcripts. We present an algorithm for reference annotation-based transcript assembly and show how it can be used to rapidly investigate novel transcripts revealed by RNA-Seq in comparison with a reference annotation. The methods described in this article are implemented in the Cufflinks suite of software for RNA-Seq, freely available from http://bio.math.berkeley.edu/cufflinks. The software is released under the BOOST license. cole@broadinstitute.org; lpachter@math.berkeley.edu Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              De novo assembly and analysis of RNA-seq data.

              We describe Trans-ABySS, a de novo short-read transcriptome assembly and analysis pipeline that addresses variation in local read densities by assembling read substrings with varying stringencies and then merging the resulting contigs before analysis. Analyzing 7.4 gigabases of 50-base-pair paired-end Illumina reads from an adult mouse liver poly(A) RNA library, we identified known, new and alternative structures in expressed transcripts, and achieved high sensitivity and specificity relative to reference-based assembly methods.
                Bookmark

                Author and article information

                Journal
                1506.05538

                Genetics
                Genetics

                Comments

                Comment on this article