33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Current diets are detrimental to both human and planetary health and shifting towards more balanced, predominantly plant-based diets is seen as crucial to improving both. Low fruit and vegetable consumption is itself a major nutritional problem. We aim to better quantify the gap between future fruit and vegetable supply and recommended consumption levels by exploring the interactions between supply and demand in more than 150 countries from 1961 to 2050.

          Methods

          In this global analysis, we use the International Model for Policy Analysis of Agricultural Commodities and Trade, which simulates the global agricultural sector, to explore the role of insufficient production of fruits and vegetables and the effects of food waste and public policy in achieving recommended fruit and vegetable consumption. First, we estimate the average historical (1961–2010) and future (2010–50) national consumption levels needed to meet WHO targets (a minimum target of 400 g/person per day or age-specific recommendations of 330–600 g/person per day) using population pyramids; for future consumption, we use projections from the Shared Socioeconomic Pathways (SSPs), a set of global socioeconomic scenarios characterised by varied assumptions on economic and population growth. We then simulate future fruit and vegetable production and demand to 2050 under three such scenarios (SSP1–3) to assess the potential impacts of economic, demographic, and technological change on consumer and producer behaviour. We then explore the potential effects of food waste applying various waste assumptions (0–33% waste). Finally, we apply two policy analysis frameworks (the NOURISHING framework and the Nuffield ladder) to assess the current state of public policy designed to achieve healthy diets.

          Findings

          Historically, fruit and vegetable availability has consistently been insufficient to supply recommended consumption levels. By 2015, 81 countries representing 55% of the global population had average fruit and vegetable availability above WHO's minimum target. Under more stringent age-specific recommendations, only 40 countries representing 36% of the global population had adequate availability. Although economic growth will help to increase fruit and vegetable availability in the future, particularly in lower-income countries, this alone will be insufficient. Even under the most optimistic socioeconomic scenarios (excluding food waste), many countries fail to achieve sufficient fruit and vegetable availability to meet even the minimum recommended target. Sub-Saharan Africa is a particular region of concern, with projections suggesting, by 2050, between 0·8 and 1·9 billion people could live in countries with average fruit and vegetable availability below 400 g/person per day. Food waste is a serious obstacle that could erode projected gains. Assuming 33% waste and socioeconomic trends similar to historical patterns, the global average availability in 2050 falls below age-specific recommendations, increasing the number of people living in countries with insufficient supply of fruits and vegetables by 1·5 billion compared with a zero waste scenario.

          Interpretation

          Increasing fruit and vegetable consumption is an important component of a shift towards healthier and more sustainable diets. Economic modelling suggests that even under optimistic socioeconomic scenarios future supply will be insufficient to achieve recommended levels in many countries. Consequently, systematic public policy targeting the constraints to producing and consuming fruits and vegetables will be needed. This will require a portfolio of interventions and investments that focus on increasing fruit and vegetable production, developing technologies and practices to reduce waste without increasing the consumer cost, and increasing existing efforts to educate consumers on healthy diets.

          Funding

          The Commonwealth Scientific and Industrial Research Organisation; Climate Change, Agriculture and Food Security (CGIAR) Research Program on Climate Change, Agriculture and Food Security; CGIAR Research Program on Policy, Institutions, and Markets; Bill & Melinda Gates Foundation; and Johns Hopkins University.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Food waste within food supply chains: quantification and potential for change to 2050

          Food waste in the global food supply chain is reviewed in relation to the prospects for feeding a population of nine billion by 2050. Different definitions of food waste with respect to the complexities of food supply chains (FSCs)are discussed. An international literature review found a dearth of data on food waste and estimates varied widely; those for post-harvest losses of grain in developing countries might be overestimated. As much of the post-harvest loss data for developing countries was collected over 30 years ago, current global losses cannot be quantified. A significant gap exists in the understanding of the food waste implications of the rapid development of ‘BRIC’ economies. The limited data suggest that losses are much higher at the immediate post-harvest stages in developing countries and higher for perishable foods across industrialized and developing economies alike. For affluent economies, post-consumer food waste accounts for the greatest overall losses. To supplement the fragmentary picture and to gain a forward view, interviews were conducted with international FSC experts. The analyses highlighted the scale of the problem, the scope for improved system efficiencies and the challenges of affecting behavioural change to reduce post-consumer waste in affluent populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing homogeneity in global food supplies and the implications for food security.

            The narrowing of diversity in crop species contributing to the world's food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change effects on agriculture: economic responses to biophysical shocks.

              Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Planet Health
                Lancet Planet Health
                The Lancet. Planetary Health
                Elsevier B.V
                2542-5196
                1 July 2019
                July 2019
                : 3
                : 7
                : e318-e329
                Affiliations
                [a ]Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, Australia
                [b ]International Food Policy Research Institute, Environment and Production Technology, Washington, DC, USA
                Author notes
                [* ]Correspondence to: Mr Daniel Mason-D'Croz, CSIRO, St Lucia, QLD 4067, Australia daniel.masondcroz@ 123456csiro.au
                Article
                S2542-5196(19)30095-6
                10.1016/S2542-5196(19)30095-6
                6637854
                31326072
                27d47048-bfbd-43da-a3bf-40c58b5f1819
                © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Article

                Comments

                Comment on this article