19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tumor suppressor gene p53 controls cellular response to a variety of stress conditions, including DNA damage and hypoxia, leading to growth arrest and/or apoptosis. Inactivation of p53, found in 40-50% of human cancers, confers selective advantage under hypoxic microenvironment during tumor progression. The mole rat, Spalax, spends its entire life cycle underground at decidedly lower oxygen tensions than any other mammal studied. Because a wide range of respiratory adaptations to hypoxic stress evolved in Spalax, we speculated that it might also have developed hypoxia adaptation mechanisms analogous to the genetic/epigenetic alterations acquired during tumor progression. Comparing Spalax with human and mouse p53 revealed an arginine (R) to lysine (K) substitution in Spalax (Arg-174 in human) in the DNA-binding domain, identical to known tumor associated mutations. Multiple p53 sequence alignments with 41 additional species confirmed that Arg-174 is highly conserved. Reporter assays uncovered that Spalax p53 protein is unable to induce apoptosis-regulating target genes, resulting in no expression of apaf1 and partial expression of puma, pten, and noxa. However, cell cycle arrest and p53 stabilization/homeostasis genes were overactivated by Spalax p53. Lys-174 was found critical for apaf1 expression inactivation. A DNA-free p53 structure model predicts that Arg-174 is important for dimerization, whereas Spalax Lys-174 prevents such interactions. Similar neighboring mutations found in human tumors favor growth arrest rather than apoptosis. We hypothesize that, in an analogy with human tumor progression, Spalax underwent remarkable adaptive p53 evolution during 40 million years of underground hypoxic life.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Live or let die: the cell's response to p53.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            p53 mutations in human cancers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The IARC TP53 database: new online mutation analysis and recommendations to users.

              Mutations in the tumor suppressor gene TP53 are frequent in most human cancers. Comparison of the mutation patterns in different cancers may reveal clues on the natural history of the disease. Over the past 10 years, several databases of TP53 mutations have been developed. The most extensive of these databases is maintained and developed at the International Agency for Research on Cancer. The database compiles all mutations (somatic and inherited), as well as polymorphisms, that have been reported in the published literature since 1989. The IARC TP53 mutation dataset is the largest dataset available on the variations of any human gene. The database is available at www.iarc.fr/P53/. In this paper, we describe recent developments of the database. These developments include restructuring of the database, which is now patient-centered, with more detailed annotations on the patient (carcinogen exposure, virus infection, genetic background). In addition, a new on-line application to retrieve somatic mutation data and analyze mutation patterns is now available. We also discuss limitations on the use of the database and provide recommendations to users. Copyright 2002 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 17 2004
                August 17 2004
                August 09 2004
                August 17 2004
                : 101
                : 33
                : 12236-12241
                Article
                10.1073/pnas.0404998101
                514462
                15302922
                27d52dd2-6469-486b-ad51-82336d5adf31
                © 2004
                History

                Comments

                Comment on this article