Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interval Coded Scoring: a toolbox for interpretable scoring systems

      1 , 2 , 1 , 2 , 1

      PeerJ Computer Science

      PeerJ

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last decades, clinical decision support systems have been gaining importance. They help clinicians to make effective use of the overload of available information to obtain correct diagnoses and appropriate treatments. However, their power often comes at the cost of a black box model which cannot be interpreted easily. This interpretability is of paramount importance in a medical setting with regard to trust and (legal) responsibility. In contrast, existing medical scoring systems are easy to understand and use, but they are often a simplified rule-of-thumb summary of previous medical experience rather than a well-founded system based on available data. Interval Coded Scoring (ICS) connects these two approaches, exploiting the power of sparse optimization to derive scoring systems from training data. The presented toolbox interface makes this theory easily applicable to both small and large datasets. It contains two possible problem formulations based on linear programming or elastic net. Both allow to construct a model for a binary classification problem and establish risk profiles that can be used for future diagnosis. All of this requires only a few lines of code. ICS differs from standard machine learning through its model consisting of interpretable main effects and interactions. Furthermore, insertion of expert knowledge is possible because the training can be semi-automatic. This allows end users to make a trade-off between complexity and performance based on cross-validation results and expert knowledge. Additionally, the toolbox offers an accessible way to assess classification performance via accuracy and the ROC curve, whereas the calibration of the risk profile can be evaluated via a calibration curve. Finally, the colour-coded model visualization has particular appeal if one wants to apply ICS manually on new observations, as well as for validation by experts in the specific application domains. The validity and applicability of the toolbox is demonstrated by comparing it to standard Machine Learning approaches such as Naive Bayes and Support Vector Machines for several real-life datasets. These case studies on medical problems show its applicability as a decision support system. ICS performs similarly in terms of classification and calibration. Its slightly lower performance is countered by its model simplicity which makes it the method of choice if interpretability is a key issue.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review.

          Developers of health care software have attributed improvements in patient care to these applications. As with any health care intervention, such claims require confirmation in clinical trials. To review controlled trials assessing the effects of computerized clinical decision support systems (CDSSs) and to identify study characteristics predicting benefit. We updated our earlier reviews by searching the MEDLINE, EMBASE, Cochrane Library, Inspec, and ISI databases and consulting reference lists through September 2004. Authors of 64 primary studies confirmed data or provided additional information. We included randomized and nonrandomized controlled trials that evaluated the effect of a CDSS compared with care provided without a CDSS on practitioner performance or patient outcomes. Teams of 2 reviewers independently abstracted data on methods, setting, CDSS and patient characteristics, and outcomes. One hundred studies met our inclusion criteria. The number and methodologic quality of studies improved over time. The CDSS improved practitioner performance in 62 (64%) of the 97 studies assessing this outcome, including 4 (40%) of 10 diagnostic systems, 16 (76%) of 21 reminder systems, 23 (62%) of 37 disease management systems, and 19 (66%) of 29 drug-dosing or prescribing systems. Fifty-two trials assessed 1 or more patient outcomes, of which 7 trials (13%) reported improvements. Improved practitioner performance was associated with CDSSs that automatically prompted users compared with requiring users to activate the system (success in 73% of trials vs 47%; P = .02) and studies in which the authors also developed the CDSS software compared with studies in which the authors were not the developers (74% success vs 28%; respectively, P = .001). Many CDSSs improve practitioner performance. To date, the effects on patient outcomes remain understudied and, when studied, inconsistent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic review: impact of health information technology on quality, efficiency, and costs of medical care.

            Experts consider health information technology key to improving efficiency and quality of health care. To systematically review evidence on the effect of health information technology on quality, efficiency, and costs of health care. The authors systematically searched the English-language literature indexed in MEDLINE (1995 to January 2004), the Cochrane Central Register of Controlled Trials, the Cochrane Database of Abstracts of Reviews of Effects, and the Periodical Abstracts Database. We also added studies identified by experts up to April 2005. Descriptive and comparative studies and systematic reviews of health information technology. Two reviewers independently extracted information on system capabilities, design, effects on quality, system acquisition, implementation context, and costs. 257 studies met the inclusion criteria. Most studies addressed decision support systems or electronic health records. Approximately 25% of the studies were from 4 academic institutions that implemented internally developed systems; only 9 studies evaluated multifunctional, commercially developed systems. Three major benefits on quality were demonstrated: increased adherence to guideline-based care, enhanced surveillance and monitoring, and decreased medication errors. The primary domain of improvement was preventive health. The major efficiency benefit shown was decreased utilization of care. Data on another efficiency measure, time utilization, were mixed. Empirical cost data were limited. Available quantitative research was limited and was done by a small number of institutions. Systems were heterogeneous and sometimes incompletely described. Available financial and contextual data were limited. Four benchmark institutions have demonstrated the efficacy of health information technologies in improving quality and efficiency. Whether and how other institutions can achieve similar benefits, and at what costs, are unclear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A practical score for the early diagnosis of acute appendicitis.

              We conducted a retrospective study of 305 patients hospitalized with abdominal pain suggestive of acute appendicitis. Signs, symptoms, and laboratory findings were analyzed for specificity, sensitivity, predictive value, and joint probability. The total joint probability, the sum of a true-positive and a true-negative result, was chosen as a diagnostic weight indicative of the accuracy of the test. Eight predictive factors were found to be useful in making the diagnosis of acute appendicitis. Their importance, according to their diagnostic weight, was determined as follows: localized tenderness in the right lower quadrant, leukocytosis, migration of pain, shift to the left, temperature elevation, nausea-vomiting, anorexia-acetone, and direct rebound pain. Based on this weight, we devised a practical diagnostic score that may help in interpreting the confusing picture of acute appendicitis.
                Bookmark

                Author and article information

                Journal
                PeerJ Computer Science
                PeerJ
                2376-5992
                2018
                April 02 2018
                : 4
                : e150
                Affiliations
                [1 ]STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
                [2 ]imec, Leuven, Belgium
                Article
                10.7717/peerj-cs.150
                © 2018
                Product
                Self URI (article page): https://peerj.com/articles/cs-150

                Comments

                Comment on this article