28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The use of annual killifish in the biocontrol of the aquatic stages of mosquitoes in temporary bodies of fresh water; a potential new tool in vector control

      research-article
      1 , , 1 , 2
      Parasites & Vectors
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mosquitoes that breed in temporary pools in remote areas that dry up seasonally are especially difficult to control through chemical or biological means. The annual killifish has been suggested as a means of eradicating the aquatic stages of mosquitoes in transient pools because they can maintain permanent populations in such habitats by undergoing suspended animation or diapause during the embryonic stages to survive periodic drought. However, very little is known about the predatory activity of annual killifish and their usefulness in mosquito control.

          Results

          The annual killifish, Nothobranchius guentheri, native to Tanzania, was used in this investigation. Food preference was tested under laboratory conditions by feeding juvenile killifish with 2 nd instar mosquito larvae of Culex quinquefasciatus in the presence of alternative food sources, such as rotifers and chironomid larvae. Semi-field tests were conducted by introduction of hibernating killifish embryos and juvenile fish to artificial ponds in an outdoor open environment that allowed natural oviposition of Cx. quinquefasciatus. Food preference studies show that N. guentheri preferred to prey on mosquito larvae than either chironomid or rotifers. When hibernating killifish embryos were added to ponds simultaneously with the addition of freshwater, the embryos hatched and fed on mosquito larval population resulting in complete elimination of the immature stages. The introduction of juvenile fish to ponds with high density of mosquito larvae resulted in total eradication of the mosquito population due to predation by fish. Complete biocontrol of the mosquito larval population was achieved in the presence of 3 fish per m 2 of pond surface area.

          Conclusions

          The annual killifish provides yet another tool that may be employed in the eradication diseases carried by mosquitoes through vector control, particularly in temporary bodies of freshwater. The fish can be conveniently transported in the absence of water in the form of hibernating embryos. Once introduced either as embryos or juveniles in ponds, the annual killifish can effectively reduce the larval population because of its aggressive predatory activity.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found

          Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem

          Background Insecticide resistance in malaria vectors is a growing concern in many countries which requires immediate attention because of the limited chemical arsenal available for vector control. The current extent and distribution of this resistance in many parts of the continent is unknown and yet such information is essential for the planning of effective malaria control interventions. Methods In 2008, a network was established, with financial support from WHO/TDR, to investigate the extent of insecticide resistance in malaria vectors in five African countries. Here, the results of bioassays on Anopheles gambiae sensu lato from two rounds of monitoring from 12 sentinel sites in three of the partner countries are reported. Results Resistance is very heterogeneous even over relatively small distances. Furthermore, in some sites, large differences in mortality rates were observed during the course of the malaria transmission season. Using WHO diagnostic doses, all populations from Burkina Faso and Chad and two of the four populations from Sudan were classified as resistant to permethrin and/or deltamethrin. Very high frequencies of DDT resistance were found in urban areas in Burkina Faso and Sudan and in a cotton-growing district in Chad. In areas where both An. gambiae s.s. and Anopheles arabiensis were present, resistance was found in both species, although generally at a higher frequency in An gambiae s.s. Anopheles gambiae s.l. remains largely susceptible to the organophosphate fenitrothion and the carbamate bendiocarb in the majority of the sentinel sites with the exception of two sites in Burkina Faso. In the cotton-growing region of Soumousso in Burkina Faso, the vector population is resistant to all four classes of insecticide available for malaria control. Conclusions Possible factors influencing the frequency of resistant individuals observed in the sentinel sites are discussed. The results of this study highlight the importance of standardized longitudinal insecticide resistance monitoring and the urgent need for studies to monitor the impact of this resistance on malaria vector control activities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The developmental biology of annual fishes. 3. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes.

            J P Wourms (1972)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso

              Background Insecticide resistance of the main malaria vector, Anopheles gambiae, has been reported in south-western Burkina Faso, West Africa. Cross-resistance to DDT and pyrethroids was conferred by alterations at site of action in the sodium channel, the Leu-Phe kdr mutation; resistance to organophosphates and carbamates resulted from a single point mutation in the oxyanion hole of the acetylcholinesterase enzyme designed as ace-1 R . Methods An entomological survey was carried out during the rainy season of 2005 at Vallée du Kou, a rice growing area in south-western Burkina Faso. At the Vallée du Kou, both insecticide resistance mechanisms have been previously described in the M and S molecular forms of An. gambiae. This survey aimed i) to update the temporal dynamics and the circumsporozoite infection rate of the two molecular forms M and S of An. gambiae ii) to update the frequency of the Leu-Phe kdr mutation within these forms and finally iii) to investigate the occurrence of the ace-1 R mutation. Mosquitoes collected by indoor residual collection and by human landing catches were counted and morphologically identified. Species and molecular forms of An. gambiae, ace-1 R and Leu-Phe kdr mutations were determined using PCR techniques. The presence of the circumsporozoite protein of Plasmodium falciparum was determined using ELISA. Results Anopheles gambiae populations were dominated by the M form. However the S form occurred in relative important proportion towards the end of the rainy season with a maximum peak in October at 51%. Sporozoite rates were similar in both forms. The frequency of the Leu-Phe kdr mutation in the S form reached a fixation level while it is still spreading in the M form. Furthermore, the ace-1 R mutation prevailed predominately in the S form and has just started spreading in the M form. The two mutations occurred concomitantly both in M and S populations. Conclusion These results showed that the Vallée du Kou, a rice growing area formerly occupied mainly by M susceptible populations, is progressively colonized by S resistant populations living in sympatry with the former. As a result, the distribution pattern of insecticide resistance mutations shows the occurrence of both resistance mechanisms concomitantly in the same populations. The impact of multiple resistance mechanisms in M and S populations of An. gambiae on vector control measures against malaria transmission, such as insecticide-treated nets (ITNs) and indoor residual spraying (IRS), in this area is discussed.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2010
                21 May 2010
                : 3
                : 46
                Affiliations
                [1 ]Biomedical Sciences Laboratory, Poseidon Science Foundation, 122 East 42nd St., Suite 1700, New York, 10168, NY, USA
                [2 ]Biocontrol R&D Laboratory, Nova Pacific, Miagao, Iloilo 5023 Philippines
                Article
                1756-3305-3-46
                10.1186/1756-3305-3-46
                2888800
                20492714
                280d5293-42f3-4927-a5a3-01ac2ec1f49c
                Copyright ©2010 Matias and Adrias; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 January 2010
                : 21 May 2010
                Categories
                Research

                Parasitology
                Parasitology

                Comments

                Comment on this article