+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Temporal Examination of Cytoplasmic Ca 2 + Levels, Sarcoplasmic Reticulum Ca 2 + Levels, and Ca 2 + -Handling-Related Proteins in Different Skeletal Muscles of Hibernating Daurian Ground Squirrels

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          To explore the possible mechanism of the sarcoplasmic reticulum (SR) in the maintenance of cytoplasmic calcium (Ca 2+) homeostasis, we studied changes in cytoplasmic Ca 2+, SR Ca 2+, and Ca 2+-handling proteins of slow-twitch muscle (soleus, SOL), fast-twitch muscle (extensor digitorum longus, EDL), and mixed muscle (gastrocnemius, GAS) in different stages in hibernating Daurian ground squirrels ( Spermophilus dauricus). Results showed that the level of cytoplasmic Ca 2+ increased and SR Ca 2+ decreased in skeletal muscle fiber during late torpor (LT) and inter-bout arousal (IBA), but both returned to summer active levels when the animals aroused from and re-entered into torpor (early torpor, ET), suggesting that intracellular Ca 2+ is dynamic during hibernation. The protein expression of ryanodine receptor1 (RyR1) increased in the LT, IBA, and ET groups, whereas the co-localization of calsequestrin1 (CSQ1) and RyR1 in GAS muscle decreased in the LT and ET groups, which may increase the possibility of RyR1 channel-mediated Ca 2+ release. Furthermore, calcium pump (SR Ca 2+-ATPase 1, SERCA1) protein expression increased in the LT, IBA, and ET groups, and the signaling pathway-related factors of SERCA activity [i.e., β-adrenergic receptor2 protein expression (in GAS), phosphorylation levels of phospholamban (in GAS), and calmodulin kinase2 (in SOL)] all increased, suggesting that these factors may be involved in the up-regulation of SERCA1 activity in different groups. The increased protein expression of Ca 2+-binding proteins CSQ1 and calmodulin (CaM) indicated that intracellular free Ca 2+-binding ability also increased in the LT, IBA, ET, and POST groups. In brief, changes in cytoplasmic and SR Ca 2+ concentrations, SR RyR1 and SERCA1 protein expression levels, and major RyR1 and SERCA1 signaling pathway-related factors were unexpectedly active in the torpor stage when metabolic functions were highly inhibited.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          The calpain system.

          The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
            • Record: found
            • Abstract: found
            • Article: not found

            Endoplasmic-reticulum calcium depletion and disease.

            The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures

              Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.

                Author and article information

                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                21 October 2020
                : 11
                1Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University , Xi’an, China
                2Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education , Xi’an, China
                3College of Life Sciences, Qufu Normal University , Qufu, China
                Author notes

                Edited by: Steven Swoap, Williams College, United States

                Reviewed by: Val Andrew Fajardo, Brock University, Canada; Sandra L. Martin, University of Colorado Anschutz Medical Campus, United States

                *Correspondence: Hui-Ping Wang, wanghp@ 123456nwu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology

                Copyright © 2020 Wang, Zhang, Ma, Chang, Peng, Xu, Wang and Gao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 45, Pages: 12, Words: 0
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Original Research


                Comment on this article