1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Model-Based Assessments of CYP-Mediated Drug-Drug Interaction Risk of Alectinib: Physiologically Based Pharmacokinetic Modeling Supported Clinical Development

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Alectinib in Crizotinib-Refractory ALK-Rearranged Non-Small-Cell Lung Cancer: A Phase II Global Study.

          Crizotinib confers improved progression-free survival compared with chemotherapy in anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC), but progression invariably occurs. We investigated the efficacy and safety of alectinib, a potent and selective ALK inhibitor with excellent CNS penetration, in patients with crizotinib-refractory ALK-positive NSCLC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phase 2 prospective analysis of alectinib in ALK-positive, crizotinib-resistant non-small-cell lung cancer

            Summary Background Alectinib, a highly selective, central nervous system (CNS)-active anaplastic lymphoma kinase (ALK) inhibitor, demonstrated promising clinical activity in crizotinib-naïve and crizotinib-resistant ALK-positive non-small-cell lung cancer (NSCLC). This phase 2 study evaluated the safety and efficacy of alectinib in ALK-positive NSCLC patients who progressed on previous crizotinib. Methods This ongoing North American study (NCT01871805) enrolled patients with stage IIIB/IV ALK-positive NSCLC, who had progressed following crizotinib. Patients were treated with oral alectinib 600 mg twice daily until progression, death or withdrawal. Primary endpoint was overall response rate (ORR) by independent review committee (IRC) using RECIST v1.1. Secondary endpoints included progression-free survival (PFS), duration of response (DOR), intracranial ORR and DOR, safety, and patient-reported outcomes. The intent-to-treat population was used for efficacy and safety analyses, with the response evaluable population used for response endpoints. Findings A total of 87 patients were enrolled in the intent-to-treat population. All patients had received prior crizotinib therapy, and 64 patients (74%) had also received prior chemotherapy. Fifty-two patients (60%) had baseline CNS metastases, of whom 18 (35%) had received no prior brain radiation therapy. At the time of primary analysis (median follow-up 4.8 months), ORR by IRC was 48% (95% CI 36–60). Adverse events were predominantly grade 1 or 2, most commonly constipation, fatigue, myalgia and peripheral edema. The most common grade ≥3 AEs were changes in laboratory values, including increased blood creatine phosphokinase (in 8%, n=7), increased alanine aminotransferase (in 6% n=5), and increased aspartate aminotransferase (in 5% n=4). Interpretation Alectinib demonstrated clinical efficacy and was well tolerated in patients with ALK-positive NSCLC who had progressed on crizotinib. Alectinib was active in the CNS, as demonstrated by durable responses in the majority of crizotinib-resistant patients with CNS disease. Therefore, alectinib could be a suitable treatment for patients with ALK-positive disease who have progressed on crizotinib.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions.

              A key component of whole body physiologically based pharmacokinetic (WBPBPK) models is the tissue-to-plasma water partition coefficients (Kpu's). The predictability of Kpu values using mechanistically derived equations has been investigated for 7 very weak bases, 20 acids, 4 neutral drugs and 8 zwitterions in rat adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, pancreas, skin, spleen and thymus. These equations incorporate expressions for dissolution in tissue water and, partitioning into neutral lipids and neutral phospholipids. Additionally, associations with acidic phospholipids were incorporated for zwitterions with a highly basic functionality, or extracellular proteins for the other compound classes. The affinity for these cellular constituents was determined from blood cell data or plasma protein binding, respectively. These equations assume drugs are passively distributed and that processes are nonsaturating. Resultant Kpu predictions were more accurate when compared to published equations, with 84% as opposed to 61% of the predicted values agreeing with experimental values to within a factor of 3. This improvement was largely due to the incorporation of distribution processes related to drug ionisation, an issue that is not addressed in earlier equations. Such advancements in parameter prediction will assist WBPBPK modelling, where time, cost and labour requirements greatly deter its application. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association
                Bookmark

                Author and article information

                Journal
                Clinical Pharmacology & Therapeutics
                Clin. Pharmacol. Ther.
                Wiley
                00099236
                September 2018
                September 2018
                December 27 2017
                : 104
                : 3
                : 505-514
                Affiliations
                [1 ]Roche Innovation Center; Basel Switzerland
                [2 ]Roche Innovation Center; New York New York USA
                [3 ]Roche Innovation Center; Welwyn UK
                Article
                10.1002/cpt.956
                29226313
                28252cc7-fa01-4b2b-9ea3-513f6f9e1f88
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article