80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urinary bladder cancer (UBC) patients at muscle invasive stage have poor clinical outcome, due to high propensity for metastasis. Cancer-associated fibroblasts (CAFs), one of the principal constituents of the tumor stroma, play an important role in tumor development. However, it is unclear whether CAFs from UBC induce cell invasion and which signaling pathway is involved. Herein, we found that conditional medium from UBC CAFs (CAF-CM) enhanced the invasion of UBC cells. CAF-CM induced the epithelial-mesenchymal transition (EMT) by regulating expression levels of EMT-associated markers in UBC cells. Higher concentration of TGFβ1 in CAF-CM, comparing with the CM from adjacent normal fibroblast, led to phosphorylation of Smad2 in UBC cells. Additionally, inhibition of TGFβ1 signaling decreased the EMT-associated gene expression, and cancer cell invasion. Interestingly, a long non-coding RNA, ZEB2NAT, was demonstrated to be essential for this TGFβ1-dependent process. ZEB2NAT depletion reversed CAF-CM-induced EMT and invasion of cancer cells, as well as reduced the ZEB2 protein level. Consistently, TGFβ1 mRNA expression is positively correlated with ZEB2NAT transcript and ZEB2 protein levels in human bladder cancer specimens. Our data revealed a novel mechanism that CAFs induces EMT and invasion of human UBC cells through the TGFβ1-ZEB2NAT-ZEB2 axis.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition.

          Expression of Snail1 in epithelial cells triggers an epithelial-mesenchymal transition (EMT). Here, we demonstrate that the synthesis of Zeb2, a transcriptional repressor of E-cadherin, is up-regulated after Snail1-induced EMT. Snail1 does not affect the synthesis of Zeb2 mRNA, but prevents the processing of a large intron located in its 5'-untranslated region (UTR). This intron contains an internal ribosome entry site (IRES) necessary for the expression of Zeb2. Maintenance of 5'-UTR Zeb2 intron is dependent on the expression of a natural antisense transcript (NAT) that overlaps the 5' splice site in the intron. Ectopic overexpression of this NAT in epithelial cells prevents splicing of the Zeb2 5'-UTR, increases the levels of Zeb2 protein, and consequently down-regulates E-cadherin mRNA and protein. The relevance of these results is demonstrated by the strong association between NAT presence and conservation of the 5'-UTR intron in cells that have undergone EMT or in human tumors with low E-cadherin expression. Therefore, the results presented in this article reveal the existence of a NAT capable of activating Zeb2 expression, explain the mechanism involved in this activation, and demonstrate that this NAT regulates E-cadherin expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of tissue stroma in cancer cell invasion.

            Maintenance of epithelial tissues needs the stroma. When the epithelium changes, the stroma inevitably follows. In cancer, changes in the stroma drive invasion and metastasis, the hallmarks of malignancy. Stromal changes at the invasion front include the appearance of myofibroblasts, cells sharing characteristics with fibroblasts and smooth muscle cells. The main precursors of myofibroblasts are fibroblasts. The transdifferentiation of fibroblasts into myofibroblasts is modulated by cancer cell-derived cytokines, such as transforming growth factor-beta (TGF-beta). TGF-beta causes cancer progression through paracrine and autocrine effects. Paracrine effects of TGF-beta implicate stimulation of angiogenesis, escape from immunosurveillance and recruitment of myofibroblasts. Autocrine effects of TGF-beta in cancer cells with a functional TGF-beta receptor complex may be caused by a convergence between TGF-beta signalling and beta-catenin or activating Ras mutations. Experimental and clinical observations indicate that myofibroblasts produce pro-invasive signals. Such signals may also be implicated in cancer pain. N-Cadherin and its soluble form act as invasion-promoters. N-Cadherin is expressed in invasive cancer cells and in host cells such as myofibroblasts, neurons, smooth muscle cells, and endothelial cells. N-Cadherin-dependent heterotypic contacts may promote matrix invasion, perineural invasion, muscular invasion, and transendothelial migration; the extracellular, the juxtamembrane and the beta-catenin binding domain of N-cadherin are implicated in positive invasion signalling pathways. A better understanding of stromal contributions to cancer progression will likely increase our awareness of the importance of the combinatorial signals that support and promote growth, dedifferentiation, invasion, and ectopic survival and eventually result in the identification of new therapeutics targeting the stroma. Copyright 2003 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stromal fibroblasts in cancer: a novel tumor-promoting cell type.

              Tumors are highly complex tissues composed of neoplastic cells and, in the case of carcinomas, stromal cell compartments containing a variety of mesenchymal cells, notably fibroblasts, myofibroblasts, endothelial cells, pericytes, and a variety of inflammatory cells associated with the immune system. Fibroblasts and myofibroblasts often represent the majority of the stromal cells within various types of human carcinomas, yet the specific contributions of these cells to tumor growth are poorly understood. Recent work has demonstrated that stromal fibroblast fractions, named carcinoma-associated fibroblasts (CAFs), that have been extracted from a number of invasive human breast carcinomas are more competent to promote the growth of mammary carcinoma cells and to enhance tumor angiogenesis than are comparable cells derived from outside of these tumor masses. CAFs include large populations of myofibroblasts that secrete elevated levels of stromal cell-derived factor 1 (SDF-1), also called CXCL12, which plays a central role in the promotion of tumor growth and angiogenesis; CAF-derived SDF-1 not only stimulates carcinoma cell growth directly through the CXCR4 receptor displayed on tumor cells but also serves to recruit endothelial progenitor cells (EPCs) into tumors, thereby furthering neoangiogenesis. In this review, we highlight the importance of this SDF-1-CXCR4 signaling pathway in the tumor microenvironment and discuss the mechanisms by which stromal fibroblasts within mammary carcinomas enhance tumor growth.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 July 2015
                2015
                : 5
                : 11924
                Affiliations
                [1 ]Nanjing Drum Tower Hospital, Nanjing University Medical School , Nanjing, Jiangsu 210008, China
                [2 ]Department of Urology, Shanghai First People’s Hospital, Shanghai Jiaotong University , Shanghai, 200080, China
                [3 ]Model Animal Research Center, MOE Key Laboratory Model Animal for Disease Study, Nanjing University , Nanjing, Jiangsu 210061, China
                [4 ]Department of Radiology, Memorial Sloan Kettering Cancer Center , New York, NY 10065, USA
                [5 ]Nanjing Urology Research Center , Nanjing, Jiangsu 210008, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep11924
                10.1038/srep11924
                4495469
                26152796
                28325f55-c42e-4d20-a1ef-a917634163c4
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 December 2014
                : 02 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article