72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Müller Cell-Derived VEGF Is Essential for Diabetes-Induced Retinal Inflammation and Vascular Leakage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Vascular endothelial growth factor (VEGF-A or VEGF) is a major pathogenic factor and therapeutic target for diabetic retinopathy (DR). Since VEGF has been proposed as a survival factor for retinal neurons, defining the cellular origin of pathogenic VEGF is necessary for the effectiveness and safety of long-term anti-VEGF therapies for DR. To determine the significance of Müller cell-derived VEGF in DR, we disrupted VEGF in Müller cells with an inducible Cre/ lox system and examined diabetes-induced retinal inflammation and vascular leakage in these conditional VEGF knockout (KO) mice.

          RESEARCH DESIGN AND METHODS

          Leukostasis was determined by counting the number of fluorescently labeled leukocytes inside retinal vasculature. Expression of biomarkers for retinal inflammation was assessed by immunoblotting of TNF-α, ICAM-1, and NF-κB. Vascular leakage was measured by immunoblotting of retinal albumin and fluorescent microscopic analysis of extravascular albumin. Diabetes-induced vascular alterations were examined by immunoblotting and immunohistochemistry for tight junctions, and by trypsin digestion assays for acellular capillaries. Retinal integrity was analyzed with morphologic and morphometric analyses.

          RESULTS

          Diabetic conditional VEGF KO mice exhibited significantly reduced leukostasis, expression of inflammatory biomarkers, depletion of tight junction proteins, numbers of acellular capillaries, and vascular leakage compared to diabetic control mice.

          CONCLUSIONS

          Müller cell-derived VEGF plays an essential and causative role in retinal inflammation, vascular lesions, and vascular leakage in DR. Therefore, Müller cells are a primary cellular target for proinflammatory signals that mediates retinal inflammation and vascular leakage in DR.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation.

          Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A central role for inflammation in the pathogenesis of diabetic retinopathy.

            Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.

              The vitreous levels of the angiogenic polypeptide vascular endothelial growth factor (also known as vascular permeability factor) were measured and compared in eyes with and without proliferative diabetic retinopathy. Undiluted vitreous samples from 20 eyes were collected at the time of vitrectomy, and vascular endothelial growth factor levels were determined by using a time-resolved immunofluorometric assay. Vitreous vascular endothelial growth factor levels were significantly higher in eyes with proliferative diabetic retinopathy than in eyes without proliferative diabetic retinopathy (P = .006; Wilcoxon Rank Sum Test). The median vitreous concentration in the eyes with proliferative diabetic retinopathy was 29.1 pM and exceeded the known concentration required for the maximal proliferation of vascular endothelial cells in vitro. These data are consistent with vascular endothelial growth factor serving as a physiologically relevant angiogenic factor in proliferative diabetic retinopathy.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                September 2010
                8 June 2010
                : 59
                : 9
                : 2297-2305
                Affiliations
                [1] 1Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China;
                [2] 2Department of Medicine Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
                [3] 3Harold Hamm Oklahoma Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma;
                [4] 4Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
                [5] 5Dean A. McGee Eye Institute, Oklahoma City, Oklahoma;
                [6] 6Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
                Author notes
                Corresponding author: Yun-Zheng Le, yun-le@ 123456ouhsc.edu .
                Article
                1420
                10.2337/db09-1420
                2927953
                20530741
                284fe1ba-9c7f-4218-b9c0-941e6d56970f
                © 2010 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 23 September 2009
                : 24 May 2010
                Funding
                Funded by: National Institutes of Health
                Award ID: R01EY19494
                Award ID: R01EY20900
                Award ID: P20RR17703
                Award ID: P20RR024215
                Award ID: P30EY12190
                Award ID: R01EY20900
                Categories
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article