19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Voluntary Exercise Prevents Cisplatin-Induced Muscle Wasting during Chemotherapy in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight, food intake as well as muscle mass, strength and signalling. Mice were treated weekly with 4 mg/kg cisplatin or saline for 6 weeks, and randomized to voluntary wheel running or not. Cisplatin treatment induced loss of body weight (29.8%, P<0.001), lean body mass (20.6%, P = 0.001), as well as anorexia, impaired muscle strength (22.5% decrease, P<0.001) and decreased glucose tolerance. In addition, cisplatin impaired Akt-signalling, induced genes related to protein degradation and inflammation, and reduced muscle glycogen content. Voluntary wheel running during treatment attenuated body weight loss by 50% (P<0.001), maintained lean body mass (P<0.001) and muscle strength (P<0.001), reversed anorexia and impairments in Akt and protein degradation signalling. Cisplatin-induced muscular inflammation was not prevented by voluntary wheel running, nor was glucose tolerance improved. Exercise training may preserve muscle mass in cancer patients receiving cisplatin treatment, potentially improving physical capacity, quality of life and overall survival.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Muscles, exercise and obesity: skeletal muscle as a secretory organ.

          During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity.

            The American Cancer Society (ACS) publishes Nutrition and Physical Activity Guidelines to serve as a foundation for its communication, policy, and community strategies and, ultimately, to affect dietary and physical activity patterns among Americans. These Guidelines, published approximately every 5 years, are developed by a national panel of experts in cancer research, prevention, epidemiology, public health, and policy, and they reflect the most current scientific evidence related to dietary and activity patterns and cancer risk. The ACS Guidelines focus on recommendations for individual choices regarding diet and physical activity patterns, but those choices occur within a community context that either facilitates or creates barriers to healthy behaviors. Therefore, this committee presents recommendations for community action to accompany the 4 recommendations for individual choices to reduce cancer risk. These recommendations for community action recognize that a supportive social and physical environment is indispensable if individuals at all levels of society are to have genuine opportunities to choose healthy behaviors. The ACS Guidelines are consistent with guidelines from the American Heart Association and the American Diabetes Association for the prevention of coronary heart disease and diabetes, as well as for general health promotion, as defined by the 2010 Dietary Guidelines for Americans and the 2008 Physical Activity Guidelines for Americans. Copyright © 2012 American Cancer Society, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review.

              Cancer survivors often seek information about how lifestyle factors, such as physical activity, may influence their prognosis. We systematically reviewed studies that examined relationships between physical activity and mortality (cancer-specific and all-cause) and/or cancer biomarkers. We identified 45 articles published from January 1950 to August 2011 through MEDLINE database searches that were related to physical activity, cancer survival, and biomarkers potentially relevant to cancer survival. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement to guide this review. Study characteristics, mortality outcomes, and biomarker-relevant and subgroup results were abstracted for each article that met the inclusion criteria (ie, research articles that included participants with a cancer diagnosis, mortality outcomes, and an assessment of physical activity). There was consistent evidence from 27 observational studies that physical activity is associated with reduced all-cause, breast cancer-specific, and colon cancer-specific mortality. There is currently insufficient evidence regarding the association between physical activity and mortality for survivors of other cancers. Randomized controlled trials of exercise that included biomarker endpoints suggest that exercise may result in beneficial changes in the circulating level of insulin, insulin-related pathways, inflammation, and, possibly, immunity; however, the evidence is still preliminary. Future research directions identified include the need for more observational studies on additional types of cancer with larger sample sizes; the need to examine whether the association between physical activity and mortality varies by tumor, clinical, or risk factor characteristics; and the need for research on the biological mechanisms involved in the association between physical activity and survival after a cancer diagnosis. Future randomized controlled trials of exercise with biomarker and cancer-specific disease endpoints, such as recurrence, new primary cancers, and cancer-specific mortality in cancer survivors, are warranted.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                30 September 2014
                : 9
                : 9
                : e109030
                Affiliations
                [1 ]The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
                [2 ]Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
                [3 ]Copenhagen University Hospital, The University Hospitals Centre for Health Care Research (UCSF), Copenhagen, Denmark
                [4 ]Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
                [5 ]Institute of Biomedicine, University of Aarhus, Aarhus C, Denmark
                University of Rome La Sapienza, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PH JFC HG BKP JG. Performed the experiments: PH JF BZ CD CB HG. Analyzed the data: PH JF BZ JG. Contributed reagents/materials/analysis tools: BZ CB HG. Wrote the paper: PH JFC CKL JG.

                † Deceased.

                Article
                PONE-D-14-25867
                10.1371/journal.pone.0109030
                4182656
                25268807
                2859ab55-376d-463a-aae8-d51816a474bd
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2014
                : 28 August 2014
                Page count
                Pages: 10
                Funding
                CIM is supported by a grant from the Danish National Research Foundation (DNRF55). CFAS is supported by a grant from Trygfonden. This study was further supported by grants from the Danish Council for Independent Research and by grants from the Novo Nordic Foundation, Lundbeck Foundation, and Fabrikant Einar Willumsens legat. JG is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Acta Oncologica Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Physiology
                Muscle Physiology
                Muscle Functions
                Medicine and Health Sciences
                Oncology
                Oncology Agents
                Chemotherapeutic Agents
                Basic Cancer Research
                Sports and Exercise Medicine
                Exercise
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article