13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle.

      Journal of Dermatological Science
      Adult, Alopecia, drug therapy, Apoptosis, drug effects, Cell Culture Techniques, Cell Division, Gene Expression Regulation, Growth Substances, metabolism, Hair Follicle, Humans, Minoxidil, pharmacology, Mitogen-Activated Protein Kinases, Phosphorylation, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-akt, Proto-Oncogene Proteins c-bcl-2, bcl-2-Associated X Protein

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Minoxidil has been widely used to treat androgenetic alopecia, but little is known about its pharmacological activity or about the identity of its target cells in hair follicles. We hypothesized that minoxidil has direct effects on the proliferation and apoptosis of dermal papilla cells (DPCs) of human hair follicle. To elucidate the mechanism of topical minoxidil action in terms of stimulating hair growth. We evaluated cell proliferations in cultured DPCs by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and measured the expressions of extracellular signal-regulated kinase (ERK), Akt, Bcl-2, and Bax by Western blot. We also measured elongation of hair follicles in organ culture. Minoxidil significantly increased the proliferation of DPCs. The levels of ERK phosphorylation and of phosphorylated Akt increased significantly 1 h post-treatment; percentage increase of ERK phosphorylation was 287% at 0.1 microM and 351% at 1.0 microM of minoxidil, and that of Akt phosphorylation was 168% at 0.1 microM and 257% at 1.0 microM of minoxidil. 1.0 microM of minoxidil increased Bcl-2 expression over 150%, while 1.0 microM of minoxidil decreased Bax expression by more than 50%. Moreover, a significant elongation of individual hair follicles in organ culture was observed after adding minoxidil. Minoxidil promotes the survival of human DPCs by activating both ERK and Akt and by preventing cell death by increasing the ratio of Bcl-2/Bax. We suggest that minoxidil stimulates the growth of human hairs by prolonging anagen through these proliferative and anti-apoptotic effects on DPCs.

          Related collections

          Author and article information

          Comments

          Comment on this article