29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pediatric premedication: a double-blind randomized trial of dexmedetomidine or ketamine alone versus a combination of dexmedetomidine and ketamine

      research-article
      1 , 2 , 1 ,
      BMC Anesthesiology
      BioMed Central
      premedication, dexmedetomidine, ketamine, pediatric patients

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Preoperative anxiety is common in pediatric patients. When dexmedetomidine is used alone for sedation as premedication, children tend to awaken when separated from their parents, and body movements occur during invasive procedures. We tested the hypothesis that the combination of dexmedetomidine and ketamine may be a useful premedication to alleviate preoperative anxiety and improve cooperation during intravenous cannulation in pediatric patients, while producing minimal adverse events.

          Methods

          A total of 135 children, aged 2–5 years and American Society of Anesthesiologists status I–II, scheduled for eye surgery were randomly allocated to receive intranasal dexmedetomidine 2.5 μg/kg (group D), oral ketamine 3 mg/kg and intranasal dexmedetomidine 2 μg/kg (group DK), or oral ketamine 6 mg/kg (group K) 30 min before surgery. Sedation state was evaluated every 10 min after premedication and emotional state was assessed during separation from their parents and peripheral intravenous cannulation. Adverse events were recorded for 24 h postoperatively. The primary endpoint was the rate of successful intravenous cannulation.

          Results

          The rate of successful venous cannulation was 47% with dexmedetomidine alone, 68% with ketamine alone, and 80% with combined premedication ( P = 0.006). The rate of satisfactory separation from parents was not different among groups. The incidence of adverse events was higher in group K compared with the other two groups (postoperative vomiting, P = 0.0041; respiratory-related complications during the perioperative period, P = 0.0032; and postoperative psychological/psychiatric adverse events, P = 0.0152).

          Conclusion

          The combination of intranasal dexmedetomidine 2 μg/kg and oral ketamine 3 mg/kg produces satisfactory separation from parents and more successful venous cannulation, allowing children to smoothly accept induction of general anesthesia.

          Trial registration

          Chinese Clinical Trial Register (Unique identifier: ChiCTR-TRC-14004475, Date of registration: 2 April 2014).

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine

          Dexmedetomidine is an α2-adrenoceptor agonist with sedative, anxiolytic, sympatholytic, and analgesic-sparing effects, and minimal depression of respiratory function. It is potent and highly selective for α2-receptors with an α2:α1 ratio of 1620:1. Hemodynamic effects, which include transient hypertension, bradycardia, and hypotension, result from the drug’s peripheral vasoconstrictive and sympatholytic properties. Dexmedetomidine exerts its hypnotic action through activation of central pre- and postsynaptic α2-receptors in the locus coeruleus, thereby inducting a state of unconsciousness similar to natural sleep, with the unique aspect that patients remain easily rousable and cooperative. Dexmedetomidine is rapidly distributed and is mainly hepatically metabolized into inactive metabolites by glucuronidation and hydroxylation. A high inter-individual variability in dexmedetomidine pharmacokinetics has been described, especially in the intensive care unit population. In recent years, multiple pharmacokinetic non-compartmental analyses as well as population pharmacokinetic studies have been performed. Body size, hepatic impairment, and presumably plasma albumin and cardiac output have a significant impact on dexmedetomidine pharmacokinetics. Results regarding other covariates remain inconclusive and warrant further research. Although initially approved for intravenous use for up to 24 h in the adult intensive care unit population only, applications of dexmedetomidine in clinical practice have been widened over the past few years. Procedural sedation with dexmedetomidine was additionally approved by the US Food and Drug Administration in 2003 and dexmedetomidine has appeared useful in multiple off-label applications such as pediatric sedation, intranasal or buccal administration, and use as an adjuvant to local analgesia techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy.

            Ketamine is a phencyclidine derivative, which functions primarily as an antagonist of the N-methyl-D-aspartate receptor. It has no affinity for gamma-aminobutyric acid receptors in the central nervous system. Ketamine shows a chiral structure consisting of two optical isomers. It undergoes oxidative metabolism, mainly to norketamine by cytochrome P450 (CYP) 3A and CYP2B6 enzymes. The use of S-ketamine is increasing worldwide, since the S(+)-enantiomer has been postulated to be a four times more potent anesthetic and analgesic than the R(-)-enantiomer and approximately two times more effective than the racemic mixture of ketamine. Because of extensive first-pass metabolism, oral bioavailability is poor and ketamine is vulnerable to pharmacokinetic drug interactions. Sublingual and nasal formulations of ketamine are being developed, and especially nasal administration produces rapid maximum plasma ketamine concentrations with relatively high bioavailability. Ketamine produces hemodynamically stable anesthesia via central sympathetic stimulation without affecting respiratory function. Animal studies have shown that ketamine has neuroprotective properties, and there is no evidence of elevated intracranial pressure after ketamine dosing in humans. Low-dose perioperative ketamine may reduce opioid consumption and chronic postsurgical pain after specific surgical procedures. However, long-term analgesic effects of ketamine in chronic pain patients have not been demonstrated. Besides analgesic properties, ketamine has rapid-acting antidepressant effects, which may be useful in treating therapy-resistant depressive patients. Well-known psychotomimetic and cognitive adverse effects restrict the clinical usefulness of ketamine, even though fewer psychomimetic adverse effects have been reported with S-ketamine in comparison with the racemate. Safety issues in long-term use are yet to be resolved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparison of intranasal dexmedetomidine and oral midazolam for premedication in pediatric anesthesia: a double-blinded randomized controlled trial.

              Midazolam is the most commonly used premedication in children. It has been shown to be more effective than parental presence or placebo in reducing anxiety and improving compliance at induction of anesthesia. Clonidine, an alpha(2) agonist, has been suggested as an alternative. Dexmedetomidine is a more alpha(2) selective drug with more favorable pharmacokinetic properties than clonidine. We designed this prospective, randomized, double-blind, controlled trial to evaluate whether intranasal dexmedetomidine is as effective as oral midazolam for premedication in children. Ninety-six children of ASA physical status I or II scheduled for elective minor surgery were randomly assigned to one of three groups. Group M received midazolam 0.5 mg/kg in acetaminophen syrup and intranasal placebo. Group D0.5 and Group D1 received intranasal dexmedetomidine 0.5 or 1 microg/kg, respectively, and acetaminophen syrup. Patients' sedation status, behavior scores, blood pressure, heart rate, and oxygen saturation were recorded by an observer until induction of anesthesia. Recovery characteristics were also recorded. There were no significant differences in parental separation acceptance, behavior score at induction and wake-up behavior score. When compared with group M, patients in group D0.5 and D1 were significantly more sedated when they were separated from their parents (P < 0.001). Patients from group D1 were significantly more sedated at induction of anesthesia when compared with group M (P = 0.016). Intranasal dexmedetomidine produces more sedation than oral midazolam, but with similar and acceptable cooperation.
                Bookmark

                Author and article information

                Contributors
                theyellow@163.com
                xiezhi@shneuro.org
                jiajie@eentanesthesia.com
                Journal
                BMC Anesthesiol
                BMC Anesthesiol
                BMC Anesthesiology
                BioMed Central (London )
                1471-2253
                29 November 2017
                29 November 2017
                2017
                : 17
                : 158
                Affiliations
                [1 ]GRID grid.411079.a, Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, ; 83 Fenyang Road, Shanghai, 200031 China
                [2 ]ISNI 0000 0001 0455 0905, GRID grid.410645.2, Department of Anesthesiology, Shanghai Deji Hospital, , Qingdao University, ; Shanghai, China
                Author information
                http://orcid.org/0000-0002-6199-7823
                Article
                454
                10.1186/s12871-017-0454-8
                5708105
                29187151
                286317e2-89ad-455c-a02c-7461bb474f50
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 15 June 2017
                : 21 November 2017
                Funding
                Funded by: Shanghai Municipal Commission of Health and Family Planning
                Award ID: 20144Y0263
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                Anesthesiology & Pain management
                premedication,dexmedetomidine,ketamine,pediatric patients
                Anesthesiology & Pain management
                premedication, dexmedetomidine, ketamine, pediatric patients

                Comments

                Comment on this article