30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DEBS – a unification theory for dry eye and blepharitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For many years, blepharitis and dry eye disease have been thought to be two distinct diseases, and evaporative dry eye distinct from aqueous insufficiency. In this treatise, we propose a new way of looking at dry eye, both evaporative and insufficiency, as the natural sequelae of decades of chronic blepharitis. Dry eye is simply the late form and late manifestation of one disease, blepharitis. We suggest the use of a new term in describing this one chronic disease, namely dry eye blepharitis syndrome (DEBS). Bacteria colonize the lid margin within a structure known as a biofilm. The biofilm allows for population densities that initiate quorum-sensing gene activation. These newly activated gene products consist of inflammatory virulence factors, such as exotoxins, cytolytic toxins, and super-antigens, which are then present for the rest of the patient’s life. The biofilm never goes away; it only thickens with age, producing increasing quantities of bacterial virulence factors, and thus, increasing inflammation. These virulence factors are likely the culprits that first cause follicular inflammation, then meibomian gland dysfunction, aqueous insufficiency, and finally, after many decades, lid destruction. We suggest that there are four stages of DEBS which correlate with the clinical manifestations of folliculitis, meibomitis, lacrimalitis, and finally lid structure damage evidenced by entropion, ectropion, and floppy eyelid syndrome. When one fully understands the structure and location of the glands within the lid, it becomes easy to understand this staged disease process. The longer a gland can resist the relentless encroachment of the invading biofilm, the longer it can maintain normal function. The stages depend purely on anatomy and years of biofilm presence. Dry eye now becomes a very easy disease to understand. We feel that dry eye should be treated and prevented by early and routine biofilm removal through electromechanical lid margin debridement.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          The pathophysiology, diagnosis, and treatment of dry eye disease.

          Dry eye disease (DED) is common; its prevalence around the world varies from 5% to 34%. Its putative pathogenetic mechanisms include hyperosmolarity of the tear film and inflammation of the ocular surface and lacrimal gland. Dry eye is clinically subdivided into two subtypes: one with decreased tear secretion (aqueous-deficient DED), and one with increased tear evaporation (hyperevaporative DED).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exotoxins of Staphylococcus aureus.

            This article reviews the literature regarding the structure and function of two types of exotoxins expressed by Staphylococcus aureus, pyrogenic toxin superantigens (PTSAgs) and hemolysins. The molecular basis of PTSAg toxicity is presented in the context of two diseases known to be caused by these exotoxins: toxic shock syndrome and staphylococcal food poisoning. The family of staphylococcal PTSAgs presently includes toxic shock syndrome toxin-1 (TSST-1) and most of the staphylococcal enterotoxins (SEs) (SEA, SEB, SEC, SED, SEE, SEG, and SEH). As the name implies, the PTSAgs are multifunctional proteins that invariably exhibit lethal activity, pyrogenicity, superantigenicity, and the capacity to induce lethal hypersensitivity to endotoxin. Other properties exhibited by one or more staphylococcal PTSAgs include emetic activity (SEs) and penetration across mucosal barriers (TSST-1). A detailed review of the molecular mechanisms underlying the toxicity of the staphylococcal hemolysins is also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenol-soluble modulins--critical determinants of staphylococcal virulence.

              Phenol-soluble modulins (PSMs) are a recently discovered family of amphipathic, alpha-helical peptides that have multiple roles in staphylococcal pathogenesis and contribute to a large extent to the pathogenic success of virulent staphylococci, such as Staphylococcus aureus. PSMs may cause lysis of many human cell types including leukocytes and erythrocytes, stimulate inflammatory responses, and contribute to biofilm development. PSMs appear to have an original role in the commensal lifestyle of staphylococci, where they facilitate growth and spreading on epithelial surfaces. Aggressive, cytolytic PSMs seem to have evolved from that original role and are mainly expressed in highly virulent S. aureus. Here, we will review the biochemistry, genetics, and role of PSMs in the commensal and pathogenic lifestyles of staphylococci, discuss how diversification of PSMs defines the aggressiveness of staphylococcal species, and evaluate potential avenues to target PSMs for drug development against staphylococcal infections. Published 2014. This article is a US Goverment work and is in the public domain in the USA.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                Clinical Ophthalmology
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove Medical Press
                1177-5467
                1177-5483
                2016
                09 December 2016
                : 10
                : 2455-2467
                Affiliations
                [1 ]BlephEx, LLC, Alvaton, KY
                [2 ]Department of Ophthalmology, Nassau University Medical Center, Hofstra University School of Medicine, East Meadow, NY, USA
                Author notes
                Correspondence: James M Rynerson, BlephEx, LLC, 275 Booth Drive, Alvaton, KY 42122, USA, Tel +1 270 779 3806, Fax +1 270 780 9544, Email docjmrmd@ 123456gmail.com
                Article
                opth-10-2455
                10.2147/OPTH.S114674
                5158179
                28003734
                287dac40-e3e8-4eec-898c-f8432582dd20
                © 2016 Rynerson and Perry. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Hypothesis

                Ophthalmology & Optometry
                biofilm,quorum-sensing gene activation,demodex,mgd,meibomian gland disease,aqueous insufficiency

                Comments

                Comment on this article