22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

          When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal realization of such a 2D system. Here, we report an experimental investigation of magneto transport in a high mobility single layer of graphene. Adjusting the chemical potential using the electric field effect, we observe an unusual half integer QHE for both electron and hole carriers in graphene. Vanishing effective carrier masses is observed at Dirac point in the temperature dependent Shubnikov de Haas oscillations, which probe the 'relativistic' Dirac particle-like dispersion. The relevance of Berry's phase to these experiments is confirmed by the phase shift of magneto-oscillations, related to the exceptional topology of the graphene band structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The structure of suspended graphene sheets

            The recent discovery of graphene has sparked significant interest, which has so far been focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particle. However, the structure of graphene - a single layer of carbon atoms densely packed in a honeycomb crystal lattice - is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional (2D) material and exhibits such a high crystal quality that electrons can travel submicron distances without scattering. On the other hand, perfect 2D crystals cannot exist in the free state, according to both theory and experiment. This is often reconciled by the fact that all graphene structures studied so far were an integral part of larger 3D structures, either supported by a bulk substrate or embedded in a 3D matrix. Here we report individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick and still display a long-range crystalline order. However, our studies by transmission electron microscopy (TEM) have revealed that suspended graphene sheets are not perfectly flat but exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically-thin single-crystal membranes offer an ample scope for fundamental research and new technologies whereas the observed corrugations in the third dimension may shed light on subtle reasons behind the stability of 2D crystals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PEGylated nanographene oxide for delivery of water-insoluble cancer drugs.

              It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via pi-pi stacking. The resulting NGO-PEG-SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO-PEG-SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
                Bookmark

                Author and article information

                Journal
                Nano Research
                Nano Res.
                Springer Nature
                1998-0124
                1998-0000
                March 2012
                February 2012
                : 5
                : 3
                : 199-212
                Article
                10.1007/s12274-012-0200-y
                © 2012
                Product

                Comments

                Comment on this article