6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional antibiotic therapy is often challenged by poor drug penetration/accumulation at infection sites and poses a significant burden to public health. Effective strategies to enhance the therapeutic efficacy of our existing arsenal include the use of nanoparticulate delivery platforms to improve drug targeting and minimize adverse effects. However, these nanocarriers are often challenged by poor loading efficiency, rapid release and inefficient targeting. Nucleic acid hybrid nanocarriers are nucleic acid nanosystems complexed or functionalized with organic or inorganic materials. Despite their immense potential in antimicrobial therapy, they are seldom utilized against pathogenic bacteria. With the emergence of antimicrobial resistance and the associated complex interplay of factors involved in antibiotic resistance, nucleic acid hybrids represent a unique opportunity to deliver antimicrobials against resistant pathogens and to target specific genes that control virulence or resistance. This review provides an unbiased overview on fabricating strategies for nucleic acid hybrids and addresses the challenges of pristine oligonucleotide nanocarriers. We report recent applications to enhance pathogen targeting, binding and control drug release. As multifunctional next-generational antimicrobials, the challenges and prospect of these nanocarriers are included.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: not found
          • Article: not found

          Nucleic acid junctions and lattices.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbiological effects of sublethal levels of antibiotics.

            The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineered nanoparticles for drug delivery in cancer therapy.

              In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                08 July 2020
                July 2020
                : 12
                : 7
                : 643
                Affiliations
                Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway; natasa.skalko-basnet@ 123456uit.no
                Author notes
                [* ]Correspondence: sybil.obuobi@ 123456uit.no ; Tel.: +47-7766-0261
                Author information
                https://orcid.org/0000-0002-2905-581X
                https://orcid.org/0000-0002-4301-2840
                Article
                pharmaceutics-12-00643
                10.3390/pharmaceutics12070643
                7408145
                32650506
                289adcde-ff58-4c1d-9e59-3fef11f5dfa1
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 June 2020
                : 06 July 2020
                Categories
                Review

                nucleic acid nanocarriers,hybrids,bacterial infections,antimicrobial resistance,dna nanostructures

                Comments

                Comment on this article