42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      WASP Family Proteins: Their Evolution and Its Physiological Implications

      research-article
      ,
      Molecular Biology of the Cell
      The American Society for Cell Biology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The WASP family control formation of actin filaments through the Arp2/3 complex. Subfamiles include WASP, SCAR/WAVE, WASH, and WHAMM. We show that the family is unexpectedly ancient and that all subfamilies are now identified. This work also identifies a subfamily-specific control mechanism, and an emerging bias towards vesicular roles of actin.

          Abstract

          WASP family proteins control actin polymerization by activating the Arp2/3 complex. Several subfamilies exist, but their regulation and physiological roles are not well understood, nor is it even known if all subfamilies have been identified. Our extensive search reveals few novel WASP family proteins. The WASP, WASH, and SCAR/WAVE subfamilies are evolutionarily ancient, with WASH the most universally present, whereas WHAMM/JMY first appears in invertebrates. An unusual Dictyostelium WASP homologue that has lost the WH1 domain has retained its function in clathrin-mediated endocytosis, demonstrating that WASPs can function with a remarkably diverse domain topology. The WASH and SCAR/WAVE regulatory complexes are much more rigidly maintained; their domain topology is highly conserved, and all subunits are present or lost together, showing that the complexes are ancient and functionally interdependent. Finally, each subfamily has a distinctive C motif, indicating that this motif plays a specific role in each subfamily's function, unlike the generic V and A motifs. Our analysis identifies which features are universally conserved, and thus essential, and which are branch-specific modifications. It also shows the WASP family is more widespread and diverse than currently appreciated and unexpectedly biases the physiological role of the Arp2/3 complex toward vesicle traffic.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck.

          Rac signalling to actin -- a pathway that is thought to be mediated by the protein Scar/WAVE (WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein -- has a principal role in cell motility. In an analogous pathway, direct interaction of Cdc42 with the related protein N-WASP stimulates actin polymerization. For the Rac-WAVE pathway, no such direct interaction has been identified. Here we report a mechanism by which Rac and the adapter protein Nck activate actin nucleation through WAVE1. WAVE1 exists in a heterotetrameric complex that includes orthologues of human PIR121 (p53-inducible messenger RNA with a relative molecular mass (M(r)) of 140,000), Nap125 (NCK-associated protein with an M(r) of 125,000) and HSPC300. Whereas recombinant WAVE1 is constitutively active, the WAVE1 complex is inactive. We therefore propose that Rac1 and Nck cause dissociation of the WAVE1 complex, which releases active WAVE1-HSPC300 and leads to actin nucleation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac.

            Rac is a Rho-family small GTPase that induces the formation of membrane ruffles. However, it is poorly understood how Rac-induced reorganization of the actin cytoskeleton, which is essential for ruffle formation, is regulated. Here we identify a novel Wiskott-Aldrich syndrome protein (WASP)-family protein, WASP family Verprolin-homologous protein (WAVE), as a regulator of actin reorganization downstream of Rac. Ectopically expressed WAVE induces the formation of actin filament clusters that overlap with the expressed WAVE itself. In this actin clustering, profilin, a monomeric actin-binding protein that has been suggested to be involved in actin polymerization, was shown to be essential. The expression of a dominant-active Rac mutant induces the translocation of endogenous WAVE from the cytosol to membrane ruffling areas. Furthermore, the co-expression of a deltaVPH WAVE mutant that cannot induce actin reorganization specifically suppresses the ruffle formation induced by Rac, but has no effect on Cdc42-induced actin-microspike formation, a phenomenon that is also known to be dependent on rapid actin reorganization. The deltaVPH WAVE also suppresses membrane-ruffling formation induced by platelet-derived growth factor in Swiss 3T3 cells. Taken together, we conclude that WAVE plays a critical role downstream of Rac in regulating the actin cytoskeleton required for membrane ruffling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of N-Wasp Activation by Cdc42 and Phosphatidylinositol 4,5-Bisphosphate

              Neuronal Wiskott-Aldrich Syndrome protein (N-WASP) transmits signals from Cdc42 to the nucleation of actin filaments by Arp2/3 complex. Although full-length N-WASP is a weak activator of Arp2/3 complex, its activity can be enhanced by upstream regulators such as Cdc42 and PI(4,5)P2. We dissected this activation reaction and found that the previously described physical interaction between the NH2-terminal domain and the COOH-terminal effector domain of N-WASP is a regulatory interaction because it can inhibit the actin nucleation activity of the effector domain by occluding the Arp2/3 binding site. This interaction between the NH2- and COOH termini must be intramolecular because in solution N-WASP is a monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) influences the activity of N-WASP through a conserved basic sequence element located near the Cdc42 binding site rather than through the WASp homology domain 1. Like Cdc42, PI(4,5)P2 reduces the affinity between the NH2- and COOH termini of the molecule. The use of a mutant N-WASP molecule lacking this basic stretch allowed us to delineate a signaling pathway in Xenopus extracts leading from PI(4,5)P2 to actin nucleation through Cdc42, N-WASP, and Arp2/3 complex. In this pathway, PI(4,5)P2 serves two functions: first, as an activator of N-WASP; and second, as an indirect activator of Cdc42.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                mbc
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 August 2010
                : 21
                : 16
                : 2880-2893
                Affiliations
                [1]Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
                Author notes
                Address correspondence to: Robert H. Insall ( r.insall@ 123456beatson.gla.ac.uk ).
                Article
                3618209
                10.1091/mbc.E10-04-0372
                2921111
                20573979
                28ab7ac5-665a-4a7e-892e-3a9a2a134634
                © 2010 by The American Society for Cell Biology
                History
                : 29 April 2010
                : 11 June 2010
                : 16 June 2010
                Categories
                Articles
                Cytoskeleton

                Molecular biology
                Molecular biology

                Comments

                Comment on this article