0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incipient regressive evolution of the circadian rhythms of a cave amphipod

      , , , , ,

      Subterranean Biology

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The habitat of cave-adapted organisms is characterized by complete darkness and in some instances, an apparent lack of environmental distinction between day and night. It is unclear if cave-adapted organisms retain circadian rhythms that can be light-entrained. Stygobromus allegheniensis (Allegheny Cave Amphipod) is an eyeless troglobitic crustacean found in caves located in the Northeastern region of the United States. Two cave populations were examined for evidence of light-entrained circadian rhythms. The first population inhabits a small tectonic cave (Ice Caves, Sam’s Point Preserve, NY) and the second (Clarksville Cave, Clarksville, NY) inhabits a long cave system in limestone rock. Experiments conducted in both the field and the laboratory suggest that the capacity to exhibit motor rhythms has been conserved in at least some individuals of both populations. Nonetheless, their motor activity rhythms have high variability of period length between individuals and do not appear to be light-entrainable. It is thus proposed that in this species, light-entrainable circadian rhythms controlling motor activity have undergone incipient regressive evolution.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: found
          • Article: not found

          Cavefish as a model system in evolutionary developmental biology.

          The Mexican tetra Astyanax mexicanus has many of the favorable attributes that have made the zebrafish a model system in developmental biology. The existence of eyed surface (surface fish) and blind cave (cavefish) dwelling forms in Astyanax also provides an attractive system for studying the evolution of developmental mechanisms. The polarity of evolutionary changes and the environmental conditions leading to the cavefish phenotype are known with certainty, and several different cavefish populations have evolved constructive and regressive changes independently. The constructive changes include enhancement of the feeding apparatus (jaws, taste buds, and teeth) and the mechanosensory system of cranial neuromasts. The homeobox gene Prox 1, which is expressed in the expanded taste buds and cranial neuromasts, is one of the genes involved in the constructive changes in sensory organ development. The regressive changes include loss of pigmentation and eye degeneration. Although adult cavefish lack functional eyes, small eye primordia are formed during embryogenesis, which later arrest in development, degenerate, and sink into the orbit. Apoptosis and lens signaling to other eye parts, such as the cornea, iris, and retina, result in the arrest of eye development and ultimate optic degeneration. Accordingly, an eye with restored cornea, iris, and retinal photoreceptor cells is formed when a surface fish lens is transplanted into a cavefish optic cup, indicating that cavefish optic tissues have conserved the ability to respond to lens signaling. Genetic analysis indicates that multiple genes regulate eye degeneration, and molecular studies suggest that Pax6 may be one of the genes controlling cavefish eye degeneration. Further studies of the Astyanax system will contribute to our understanding of the evolution of developmental mechanisms in vertebrates.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conservation of early odontogenic signaling pathways in Aves.

              Teeth have been missing from birds (Aves) for at least 60 million years. However, in the chick oral cavity a rudiment forms that resembles the lamina stage of the mammalian molar tooth germ. We have addressed the molecular basis for this secondary loss of tooth formation in Aves by analyzing in chick embryos the status of molecular pathways known to regulate mouse tooth development. Similar to the mouse dental lamina, expression of Fgf8, Pitx2, Barx1, and Pax9 defines a potential chick odontogenic region. However, the expression of three molecules involved in tooth initiation, Bmp4, Msx1, and Msx2, are absent from the presumptive chick dental lamina. In chick mandibles, exogenous bone morphogenetic protein (BMP) induces Msx expression and together with fibroblast growth factor promotes the development of Sonic hedgehog expressing epithelial structures. Distinct epithelial appendages also were induced when chick mandibular epithelium was recombined with a tissue source of BMPs and fibroblast growth factors, chick skin mesenchyme. These results show that, although latent, the early signaling pathways involved in odontogenesis remain inducible in Aves and suggest that loss of odontogenic Bmp4 expression may be responsible for the early arrest of tooth development in living birds.
                Bookmark

                Author and article information

                Journal
                Subterranean Biology
                SB
                Pensoft Publishers
                1314-2615
                1768-1448
                October 07 2016
                October 07 2016
                : 20
                : 1-13
                Article
                10.3897/subtbiol.20.10010
                © 2016

                Comments

                Comment on this article