2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Birth-and-Death Evolution of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Diversification of Cuticular Hydrocarbon Synthesis in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The birth-and-death evolutionary model proposes that some members of a multigene family are phylogenetically stable and persist as a single copy over time, whereas other members are phylogenetically unstable and undergo frequent duplication and loss. Functional studies suggest that stable genes are likely to encode essential functions, whereas rapidly evolving genes reflect phenotypic differences in traits that diverge rapidly among species. One such class of rapidly diverging traits are insect cuticular hydrocarbons (CHCs), which play dual roles in chemical communications as short-range recognition pheromones as well as protecting the insect from desiccation. Insect CHCs diverge rapidly between related species leading to ecological adaptation and/or reproductive isolation. Because the CHC and essential fatty acid biosynthetic pathways share common genes, we hypothesized that genes involved in the synthesis of CHCs would be evolutionary unstable, whereas those involved in fatty acid-associated essential functions would be evolutionary stable. To test this hypothesis, we investigated the evolutionary history of the fatty acyl-CoA reductases (FARs) gene family that encodes enzymes in CHC synthesis. We compiled a unique data set of 200 FAR proteins across 12 Drosophila species. We uncovered a broad diversity in FAR content which is generated by gene duplications, subsequent gene losses, and alternative splicing. We also show that FARs expressed in oenocytes and presumably involved in CHC synthesis are more unstable than FARs from other tissues. Taken together, our study provides empirical evidence that a comparative approach investigating the birth-and-death evolution of gene families can identify candidate genes involved in rapidly diverging traits between species.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Concerted and birth-and-death evolution of multigene families.

          Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomics of the eukaryotes.

            A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecological, behavioral, and biochemical aspects of insect hydrocarbons.

              This review covers selected literature from 1982 to the present on some of the ecological, behavioral, and biochemical aspects of hydrocarbon use by insects and other arthropods. Major ecological and behavioral topics are species- and gender-recognition, nestmate recognition, task-specific cues, dominance and fertility cues, chemical mimicry, and primer pheromones. Major biochemical topics include chain length regulation, mechanism of hydrocarbon formation, timing of hydrocarbon synthesis and transport, and biosynthesis of volatile hydrocarbon pheromones of Lepidoptera and Coleoptera. In addition, a section is devoted to future research needs in this rapidly growing area of science.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                June 2019
                10 May 2019
                10 May 2019
                : 11
                : 6
                : 1541-1551
                Affiliations
                [1 ]Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, France
                [2 ]Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison
                [3 ]Department of Entomology, Michigan State University
                [4 ]Ecology, Evolutionary Biology and Behavior, Michigan State University
                [5 ]Department of Biology, University of Maryland, College Park, MD
                [6 ]PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
                Author notes
                Corresponding author: E-mail: hwchung@ 123456msu.edu .
                Author information
                http://orcid.org/0000-0001-5056-2755
                Article
                evz094
                10.1093/gbe/evz094
                6546124
                31076758
                28bd23fc-7044-4f20-a21c-4e4fbe0b855d
                © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 April 2019
                Page count
                Pages: 11
                Funding
                Funded by: Howard Hughes Medical Institute 10.13039/100000011
                Funded by: Michigan State University AgBioresearch
                Award ID: MICL02522
                Funded by: Bloomington Drosophila Stock Center
                Funded by: NIH 10.13039/100000002
                Award ID: P40OD018537
                Categories
                Research Article

                Genetics
                birth-and-death evolution,cuticular hydrocarbons,drosophila,fatty acyl-coa reductase,oenocytes

                Comments

                Comment on this article