6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found
      Is Open Access

      Vision 20/20: Simultaneous CT-MRI - Next chapter of multimodality imaging : Simultaneous CT-MRI

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 63

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic Resonance Fingerprinting

          Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.

            At the UMC Utrecht, The Netherlands, we have constructed a prototype MRI accelerator. The prototype is a modified 6 MV Elekta (Crawley, UK) accelerator next to a modified 1.5 T Philips Achieva (Best, The Netherlands) MRI system. From the initial design onwards, modifications to both systems were aimed to yield simultaneous and unhampered operation of the MRI and the accelerator. Indeed, the simultaneous operation is shown by performing diagnostic quality 1.5 T MRI with the radiation beam on. No degradation of the performance of either system was found. The integrated 1.5 T MRI system and radiotherapy accelerator allow simultaneous irradiation and MR imaging. The full diagnostic imaging capacities of the MRI can be used; dedicated sequences for MRI-guided radiotherapy treatments will be developed. This proof of concept opens the door towards a clinical prototype to start testing MRI-guided radiation therapy (MRIgRT) in the clinic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5

              THz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structure. In complex oxides, this method has been used to melt electronic orders, drive insulator to metal transitions or induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature in YBa2Cu3O6+x. By combining femtosecond X-ray diffraction and ab initio density functional theory calculations, we determine here the crystal structure of this exotic non-equilibrium state. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at 100 K causes a staggered dilation/contraction of the Cu-O2 intra/inter- bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause dramatic changes in the electronic structure. Amongst these, the enhancement in the dx2-y2 character of the in-plane electronic structure is likely to favor superconductivity.
                Bookmark

                Author and article information

                Journal
                Medical Physics
                Med. Phys.
                Wiley
                00942405
                October 2015
                September 17 2015
                September 17 2015
                : 42
                : 10
                : 5879-5889
                Article
                10.1118/1.4929559
                28c83317-1e23-4ddc-b24c-d1b652266062
                © 2015

                Comments

                Comment on this article