31
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of adding unsaturated fatty acids on fatty acid composition of saccharomyces cerevisiae and major volatile compounds in wine

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synergistic influences of three unsaturated fatty acids (UFAs, namely linoleic acid, oleic acid and linolenic acid) on the fatty acid composition of Saccharomyces cerevisiae and major volatile compounds were investigated in synthetic grape juice. The addition of UFAs led to a corresponding increase in UFAs in the cellular lipid, which was accompanied by a reverse reduction in the content of medium-chain saturated fatty acids (C6:0 to C14:0) and little variation in that of long-chain saturated fatty acids (C16:0 to C24:0). The supplementation of UFAs considerably improved yeast growth and fermentation activity and, in particular, increased the concentrations of most volatile compounds in wine, including higher alcohols (2-phenylethanol, 2-methyl-1-propanol and 3-(methylthio)-1-propanol), medium-chain fatty acids (butanoic acid, hexanoic acid and octanoic acid), acetate esters (isoamyl acetate and 2-phenylethyl acetate) and all ethyl esters. Remarkable linear relationships were further found between ethyl esters and the concentration of the added UFAs (R² from 0.909 to 0.996), which significantly intensified the fruity, flowery and sweet attributes of the final wine, as assessed by calculating the odour activity values. Our results suggest that rationally increasing the concentration of UFAs is not only a practical method to improve yeast fermentation activity, but also a potential approach to manipulating wine aroma.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

          Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any significant anthocyanin content, exhibited increased photoprotection mechanisms under water deficit conditions. Water deficit increased ABA, proline, sugar and anthocyanin concentrations in Cabernet Sauvignon, but not Chardonnay berries, consistent with the hypothesis that ABA enhanced accumulation of these compounds. Water deficit increased the transcript abundance of lipoxygenase and hydroperoxide lyase in fatty metabolism, a pathway known to affect berry and wine aromas. These changes in metabolism have important impacts on berry flavor and quality characteristics. Several of these metabolites are known to contribute to increased human-health benefits.
            • Record: found
            • Abstract: not found
            • Article: not found

            Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions

              • Record: found
              • Abstract: found
              • Article: not found

              Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content.

              In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Delta(9)Z-C(16:1)) and oleic acid (Delta(9)Z-C(18:1)), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C(16:0)) and stearic acid (C(18:0)), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Delta(9) and Delta(11)) and substrate chain-length preferences (i.e., C(16:0) and C(18:0)); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Delta(11)Z-C(18:1)), whereas neither Delta(11)Z-C(16:1) nor palmitoleic acid (Delta(9)Z-C(16:1)) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                sajev
                South African Journal of Enology and Viticulture
                S. Afr. J. Enol. Vitic.
                Stellenbosch University (Stellenbosch )
                0253-939X
                2015
                : 36
                : 2
                : 285-295
                Affiliations
                [1 ] China Agricultural University China
                Article
                S2224-79042015000200001
                28cba6fc-2516-4816-a7aa-472099b67f72

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO South Africa

                Self URI (journal page): http://www.scielo.org.za/scielo.php?script=sci_serial&pid=2224-7904&lng=en
                Categories
                Agriculture, Multidisciplinary

                General agriculture
                Wine yeast,unsaturated fatty acids,fatty acid composition,aroma compounds
                General agriculture
                Wine yeast, unsaturated fatty acids, fatty acid composition, aroma compounds

                Comments

                Comment on this article

                Related Documents Log