19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soil, food security and human health: a review : Soil, food security and human health

      ,
      European Journal of Soil Science
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Metagenomics: application of genomics to uncultured microorganisms.

          Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zinc in plants.

            Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Agriculture. Nutrient imbalances in agricultural development.

                Bookmark

                Author and article information

                Journal
                European Journal of Soil Science
                Eur J Soil Sci
                Wiley-Blackwell
                13510754
                March 2015
                March 22 2015
                : 66
                : 2
                : 257-276
                Article
                10.1111/ejss.12216
                28ceefd4-20e9-4a35-add0-de4c9345dd5a
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article