13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecules that target nucleophosmin for cancer treatment: an update

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin plays crucial roles in ribosome maturation and export, centrosome duplication, cell cycle progression, histone assembly and response to a variety of stress stimuli. Much interest in this protein has arisen in the past ten years, since the discovery of heterozygous mutations in the terminal exon of the NPM1 gene, which are the most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also frequently overexpressed in solid tumours and, in many cases, its overexpression correlates with mitotic index and metastatization. Therefore it is considered as a promising target for the treatment of both haematologic and solid malignancies. NPM1 targeting molecules may suppress different functions of the protein, interfere with its subcellular localization, with its oligomerization properties or drive its degradation. In the recent years, several such molecules have been described and here we review what is currently known about them, their interaction with nucleophosmin and the mechanistic basis of their toxicity. Collectively, these molecules exemplify a number of different strategies that can be adopted to target nucleophosmin and we summarize them at the end of the review.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Aptamers as therapeutics

          Key Points Aptamers are single-stranded oligonucleotides that fold into defined architectures and bind to targets such as proteins. In binding proteins they often inhibit protein–protein interactions and thereby may elicit therapeutic effects such as antagonism. Aptamers are discovered using SELEX (systematic evolution of ligands by exponential enrichment), a directed in vitro evolution technique in which large libraries of degenerate oligonucleotides are iteratively and alternately partitioned for target binding. They are then amplified enzymatically until functional sequences are identified by the sequencing of cloned individuals. For most therapeutic purposes, aptamers are truncated to reduce synthesis costs, modified at the sugars and capped at their termini to increase nuclease resistance, and conjugated to polyethylene glycol or another entity to reduce renal filtration rates. The first aptamer approved for a therapeutic application was pegaptanib sodium (Macugen; Pfizer/Eyetech), which was approved in 2004 by the US Food and Drug Administration for macular degeneration. Eight other aptamers are currently undergoing clinical evaluation for various haematology, oncology, ocular and inflammatory indications. Aptamers are ultimately chemically synthesized in a readily scalable process in which specific conjugation points are introduced with defined stereochemistry. Unlike some protein therapeutics, aptamers do not elicit antibodies, and because aptamers generally contain sugars modified at their 2′-positions, Toll-like receptor-mediated innate immune responses are also abrogated. As aptamers are oligonucleotides they can be readily assembled into supramolecular multi-component structures using hybridization. Owing to the fact that binding to appropriate cell-surface targets can lead to internalization, aptamers can also be used to deliver therapeutic cargoes such as small interfering RNA. Supramolecular assemblies of aptamers and delivery agents have already been demonstrated in vivo and may pave the way for further therapeutic strategies with this modality in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.

            Nucleophosmin (NPM), a nucleocytoplasmic shuttling protein with prominent nucleolar localization, regulates the ARF-p53 tumor-suppressor pathway. Translocations involving the NPM gene cause cytoplasmic dislocation of the NPM protein. We used immunohistochemical methods to study the subcellular localization of NPM in bone marrow-biopsy specimens from 591 patients with primary acute myelogenous leukemia (AML). We then correlated the presence of cytoplasmic NPM with clinical and biologic features of the disease. Cytoplasmic NPM was detected in 208 (35.2 percent) of the 591 specimens from patients with primary AML but not in 135 secondary AML specimens or in 980 hematopoietic or extrahematopoietic neoplasms other than AML. It was associated with a wide spectrum of morphologic subtypes of the disease, a normal karyotype, and responsiveness to induction chemotherapy, but not with recurrent genetic abnormalities. There was a high frequency of FLT3 internal tandem duplications and absence of CD34 and CD133 in AML specimens with a normal karyotype and cytoplasmic dislocation of NPM, but not in those in which the protein was restricted to the nucleus. AML specimens with cytoplasmic NPM carried mutations of the NPM gene that were predicted to alter the protein at its C-terminal; this mutant gene caused cytoplasmic localization of NPM in transfected cells. Cytoplasmic NPM is a characteristic feature of a large subgroup of patients with AML who have a normal karyotype, NPM gene mutations, and responsiveness to induction chemotherapy. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma.

              The 2;5 chromosomal translocation occurs in most anaplastic large-cell non-Hodgkin's lymphomas arising from activated T lymphocytes. This rearrangement was shown to fuse the NPM nucleolar phosphoprotein gene on chromosome 5q35 to a previously unidentified protein tyrosine kinase gene, ALK, on chromosome 2p23. In the predicted hybrid protein, the amino terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma kinase (ALK). Expressed in the small intestine, testis, and brain but not in normal lymphoid cells, ALK shows greatest sequence similarity to the insulin receptor subfamily of kinases. Unscheduled expression of the truncated ALK may contribute to malignant transformation in these lymphomas.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 July 2016
                5 April 2016
                : 7
                : 28
                : 44821-44840
                Affiliations
                1 Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
                2 Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università di Chieti “G. d'Annunzio”, Chieti, Italy
                3 Ce.S.I.-MeT Centro Scienze dell'Invecchiamento-Medicina Traslazionale, Università di Chieti “G. d'Annunzio”, Chieti, Italy
                4 Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “Sapienza”, Rome, Italy
                Author notes
                Correspondence to: Luca Federici, lfederici@ 123456unich.it
                Article
                8599
                10.18632/oncotarget.8599
                5190137
                27058426
                28e76c7d-ddd8-46c4-bcf8-e8d8e53af432
                Copyright: © 2016 Matteo et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 January 2016
                : 28 March 2016
                Categories
                Review

                Oncology & Radiotherapy
                nucleophosmin,b23,acute myeloid leukemia,solid tumours,targeted therapy
                Oncology & Radiotherapy
                nucleophosmin, b23, acute myeloid leukemia, solid tumours, targeted therapy

                Comments

                Comment on this article