+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Exceptional advancement has been made in the development of graphene optical nanoantennas. They are incorporated with optoelectronic devices for plasmonics application and have been an active research area across the globe. The interest in graphene plasmonic devices is driven by the different applications they have empowered, such as ultrafast nanodevices, photodetection, energy harvesting, biosensing, biomedical imaging and high-speed terahertz communications. In this article, the aim is to provide a detailed review of the essential explanation behind graphene nanoantennas experimental proofs for the developments of graphene-based plasmonics antennas, achieving enhanced light–matter interaction by exploiting graphene material conductivity and optical properties. First, the fundamental graphene nanoantennas and their tunable resonant behavior over THz frequencies are summarized. Furthermore, incorporating graphene–metal hybrid antennas with optoelectronic devices can prompt the acknowledgment of multi-platforms for photonics. More interestingly, various technical methods are critically studied for frequency tuning and active modulation of optical characteristics, through in situ modulations by applying an external electric field. Second, the various methods for radiation beam scanning and beam reconfigurability are discussed through reflectarray and leaky-wave graphene antennas. In particular, numerous graphene antenna photodetectors and graphene rectennas for energy harvesting are studied by giving a critical evaluation of antenna performances, enhanced photodetection, energy conversion efficiency and the significant problems that remain to be addressed. Finally, the potential developments in the synthesis of graphene material and technological methods involved in the fabrication of graphene–metal nanoantennas are discussed.

          Related collections

          Most cited references309

          • Record: found
          • Abstract: found
          • Article: not found

          From metamaterials to metadevices.

          Metamaterials, artificial electromagnetic media that are structured on the subwavelength scale, were initially suggested for the negative-index 'superlens'. Later metamaterials became a paradigm for engineering electromagnetic space and controlling propagation of waves: the field of transformation optics was born. The research agenda is now shifting towards achieving tunable, switchable, nonlinear and sensing functionalities. It is therefore timely to discuss the emerging field of metadevices where we define the devices as having unique and useful functionalities that are realized by structuring of functional matter on the subwavelength scale. In this Review we summarize research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals. The Review also encompasses microelectromechanical metadevices, metadevices engaging the nonlinear and quantum response of superconductors, electrostatic and optomechanical forces and nonlinear metadevices incorporating lumped nonlinear components.
            • Record: found
            • Abstract: found
            • Article: not found

            Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves.

            The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs) and surface waves (SWs) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction. Here, we demonstrate theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency. Distinct from conventional devices such as prism or grating couplers, the momentum mismatch between PW and SW is compensated by the reflection-phase gradient of the meta-surface, and a nearly perfect PW-SW conversion can happen for any incidence angle larger than a critical value. Experiments in the microwave region, including both far-field and near-field characterizations, are in excellent agreement with full-wave simulations. Our findings may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit.

              In atomic physics, the coherent coupling of a broad and a narrow resonance leads to quantum interference and provides the general recipe for electromagnetically induced transparency (EIT). A sharp resonance of nearly perfect transmission can arise within a broad absorption profile. These features show remarkable potential for slow light, novel sensors and low-loss metamaterials. In nanophotonics, plasmonic structures enable large field strengths within small mode volumes. Therefore, combining EIT with nanoplasmonics would pave the way towards ultracompact sensors with extremely high sensitivity. Here, we experimentally demonstrate a nanoplasmonic analogue of EIT using a stacked optical metamaterial. A dipole antenna with a large radiatively broadened linewidth is coupled to an underlying quadrupole antenna, of which the narrow linewidth is solely limited by the fundamental non-radiative Drude damping. In accordance with EIT theory, we achieve a very narrow transparency window with high modulation depth owing to nearly complete suppression of radiative losses.

                Author and article information

                Sensors (Basel)
                Sensors (Basel)
                Sensors (Basel, Switzerland)
                04 March 2020
                March 2020
                : 20
                : 5
                [1 ]Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; zaka_18000817@ 123456utp.edu.my
                [2 ]Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive, Bethlehem, PA 18015, USA
                [3 ]Department of Electrical Communication Engineering, University of Engineering and Technology Peshawar, Kohat campus, Kohat 26030, Pakistan
                Author notes
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).



                Comment on this article