3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: a nationwide cohort study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Real-world evidence on the association between autoimmune inflammatory rheumatic diseases, therapies related to these diseases, and COVID-19 outcomes are inconsistent. We aimed to investigate the potential association between autoimmune inflammatory rheumatic diseases and COVID-19 early in the COVID-19 pandemic.

          Methods

          We did an exposure-driven, propensity score-matched study using a South Korean nationwide cohort linked to general health examination records. We analysed all South Korean patients aged older than 20 years who underwent SARS-CoV-2 RT-PCR testing between Jan 1 and May 30, 2020, and received general health examination results from the Korean National Health Insurance Service. We defined autoimmune inflammatory rheumatic diseases (inflammatory arthritis and connective tissue diseases) based on the relevant ICD-10 codes, with at least two claims (outpatient or inpatient) within 1 year. The outcomes were positive SARS-CoV-2 RT-PCR test, severe COVID-19 (requirement of oxygen therapy, intensive care unit admission, application of invasive ventilation, or death), and COVID-19-related death. Adjusted odds ratios (ORs) with 95% CIs were estimated after adjusting for the potential confounders.

          Findings

          Between Jan 1 and May 30, 2020, 133 609 patients (70 050 [52·4%] female and 63 559 [47·6%] male) completed the general health examination and were tested for SARS-CoV-2; 4365 (3·3%) were positive for SARS-CoV-2, and 8297 (6·2%) were diagnosed with autoimmune inflammatory rheumatic diseases. After matching, patients with an autoimmune inflammatory rheumatic disease showed an increased likelihood of testing positive for SARS-CoV-2 (adjusted OR 1·19, 95% CI 1·03–1·40; p=0·026), severe COVID-19 outcomes (1·26, 1·02–1·59; p=0·041), and COVID-19-related death (1·69, 1·01–2·84; p=0·046). Similar results were observed in patients with connective tissue disease and inflammatory arthritis. Treatment with any dose of systemic corticosteroids or disease-modifying antirheumatic drugs (DMARDs) were not associated with COVID-19-related outcomes, but those receiving high dose (≥10 mg per day) of systemic corticosteroids had an increased likelihood of a positive SARS-CoV-2 test (adjusted OR 1·47, 95% CI 1·05–2·03; p=0·022), severe COVID-19 outcomes (1·76, 1·06–2·96; p=0·031), and COVID-19-related death (3·34, 1·23–8·90; p=0·017).

          Interpretation

          Early in the COVID-19 pandemic, autoimmune inflammatory rheumatic diseases were associated with an increased likelihood of a positive SARS-CoV-2 PCR test, worse clinical outcomes of COVID-19, and COVID-19-related deaths in South Korea. A high dose of systemic corticosteroid, but not DMARDs, showed an adverse effect on SARS-CoV-2 infection and COVID-19-related clinical outcomes.

          Funding

          National Research Foundation of Korea.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study

          Summary Background An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. Methods In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. Findings Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3–11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. Interpretation The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1–2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. Funding None.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study

            Summary Background Mortality of patients with coronavirus disease 2019 (COVID-19), acute respiratory distress syndrome (ARDS), and systemic inflammation is high. In areas of pandemic outbreak, the number of patients can exceed maximum capacity of intensive care units (ICUs), and, thus, these individuals often receive non-invasive ventilation outside of the ICU. Effective treatments for this population are needed urgently. Anakinra is a recombinant interleukin-1 receptor antagonist that might be beneficial in this patient population. Methods We conducted a retrospective cohort study at the San Raffaele Hospital in Milan, Italy. We included consecutive patients (aged ≥18 years) with COVID-19, moderate-to-severe ARDS, and hyperinflammation (defined as serum C-reactive protein ≥100 mg/L, ferritin ≥900 ng/mL, or both) who were managed with non-invasive ventilation outside of the ICU and who received standard treatment of 200 mg hydroxychloroquine twice a day orally and 400 mg lopinavir with 100 mg ritonavir twice a day orally. We compared survival, mechanical ventilation-free survival, changes in C-reactive protein, respiratory function, and clinical status in a cohort of patients who received additional treatment with anakinra (either 5 mg/kg twice a day intravenously [high dose] or 100 mg twice a day subcutaneously [low dose]) with a retrospective cohort of patients who did not receive anakinra (referred to as the standard treatment group). All outcomes were assessed at 21 days. This study is part of the COVID-19 Biobank study, which is registered with ClinicalTrials.gov, NCT04318366. Findings Between March 17 and March 27, 2020, 29 patients received high-dose intravenous anakinra, non-invasive ventilation, and standard treatment. Between March 10 and March 17, 2020, 16 patients received non-invasive ventilation and standard treatment only and comprised the comparison group for this study. A further seven patients received low-dose subcutaneous anakinra in addition to non-invasive ventilation and standard treatment; however, anakinra treatment was interrupted after 7 days because of a paucity of effects on serum C-reactive protein and clinical status. At 21 days, treatment with high-dose anakinra was associated with reductions in serum C-reactive protein and progressive improvements in respiratory function in 21 (72%) of 29 patients; five (17%) patients were on mechanical ventilation and three (10%) died. In the standard treatment group, eight (50%) of 16 patients showed respiratory improvement at 21 days; one (6%) patient was on mechanical ventilation and seven (44%) died. At 21 days, survival was 90% in the high-dose anakinra group and 56% in the standard treatment group (p=0·009). Mechanical ventilation-free survival was 72% in the anakinra group versus 50% in the standard treatment group (p=0·15). Bacteraemia occurred in four (14%) of 29 patients receiving high-dose anakinra and two (13%) of 16 patients receiving standard treatment. Discontinuation of anakinra was not followed by inflammatory relapses. Interpretation In this retrospective cohort study of patients with COVID-19 and ARDS managed with non-invasive ventilation outside of the ICU, treatment with high-dose anakinra was safe and associated with clinical improvement in 72% of patients. Confirmation of efficacy will require controlled trials. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids

              Rationale: Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 (angiotensin-converting enzyme 2), and TMPRSS2 (transmembrane protease serine 2) mediate viral infection of host cells. We reasoned that differences in ACE2 or TMPRSS2 gene expression in sputum cells among patients with asthma may identify subgroups at risk for COVID-19 morbidity. Objectives: To determine the relationship between demographic features and sputum ACE2 and TMPRSS2 gene expression in asthma. Methods: We analyzed gene expression for ACE2 and TMPRSS2, and for ICAM-1 (intercellular adhesion molecule 1) (rhinovirus receptor as a comparator) in sputum cells from 330 participants in SARP-3 (Severe Asthma Research Program-3) and 79 healthy control subjects. Measurements and Main Results: Gene expression of ACE2 was lower than TMPRSS2, and expression levels of both genes were similar in asthma and health. Among patients with asthma, male sex, African American race, and history of diabetes mellitus were associated with higher expression of ACE2 and TMPRSS2. Use of inhaled corticosteroids (ICS) was associated with lower expression of ACE2 and TMPRSS2, but treatment with triamcinolone acetonide did not decrease expression of either gene. These findings differed from those for ICAM-1, where gene expression was increased in asthma and less consistent differences were observed related to sex, race, and use of ICS. Conclusions: Higher expression of ACE2 and TMPRSS2 in males, African Americans, and patients with diabetes mellitus provides rationale for monitoring these asthma subgroups for poor COVID-19 outcomes. The lower expression of ACE2 and TMPRSS2 with ICS use warrants prospective study of ICS use as a predictor of decreased susceptibility to SARS-CoV-2 infection and decreased COVID-19 morbidity.
                Bookmark

                Author and article information

                Journal
                Lancet Rheumatol
                Lancet Rheumatol
                The Lancet. Rheumatology
                Elsevier Ltd.
                2665-9913
                18 June 2021
                18 June 2021
                Affiliations
                [a ]Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea
                [b ]Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
                [c ]Yonsei University College of Medicine, Seoul, South Korea
                [d ]Department of Data Science, Sejong University College of Software Convergence, Seoul, South Korea
                [e ]Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
                [f ]Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
                [g ]Division of Allergy-Immunology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
                [h ]Korea University College of Medicine, Seoul, South Korea
                [i ]Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
                [j ]Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
                [k ]Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Barcelona, Spain
                [l ]ICREA (Catalan Institution for Research and Advanced Studies), Barcelona, Spain
                [m ]Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
                [n ]The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
                [o ]Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
                Author notes
                [* ]Correspondence to: Prof Seung Won Lee, Department of Data Science, Sejong University College of Software Convergence, Seoul 05006, South Korea
                [** ]Dr Dong Keon Yon, Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea
                [†]

                Contributed equally as first authors

                Article
                S2665-9913(21)00151-X
                10.1016/S2665-9913(21)00151-X
                8213376
                34179832
                28e9f40a-eb1f-4f22-9c1f-6775ab279f2b
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article