33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Physical Review Letters
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of \(1.0 \times 10^{-21}\). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of \(410^{+160}_{-180}\) Mpc corresponding to a redshift \(z = 0.09^{+0.03}_{-0.04}\). In the source frame, the initial black hole masses are \(36^{+5}_{-4} M_\odot\) and \(29^{+4}_{-4} M_\odot\), and the final black hole mass is \(62^{+4}_{-4} M_\odot\), with \(3.0^{+0.5}_{-0.5} M_\odot c^2\) radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space

            We present a novel scenario where a scalar field acquires a mass which depends on the local matter density: the field is massive on Earth, where the density is high, but is essentially free in the solar system, where the density is low. All existing tests of gravity are satisfied. We predict that near-future satellite experiments could measure an effective Newton's constant in space different than that on Earth, as well as violations of the equivalence principle stronger than currently allowed by laboratory experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

              We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                December 2017
                December 4 2017
                : 119
                : 23
                Article
                10.1103/PhysRevLett.119.231101
                29286705
                28f25dca-2da9-432d-b644-dd707994514b
                © 2017

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article