5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are conflicting reports regarding the efficacy of plant versus animal-derived protein to support muscle and strength development with resistance training. The purpose of this study was to determine whether soy and whey protein supplements matched for leucine would comparably support strength increases and muscle growth following 12 weeks of resistance training. Sixty-one untrained young men ( n = 19) and women ( n = 42) (18–35 year) enrolled in this study, and 48 completed the trial (17 men, 31 women). All participants engaged in supervised resistance training 3×/week and consumed 19 grams of whey protein isolate or 26 grams of soy protein isolate, both containing 2 g (grams) of leucine. Multi-level modeling indicated that total body mass (0.68 kg; 95% CI: 0.08, 1.29 kg; p < 0.001), lean body mass (1.54 kg; 95% CI: 0.94, 2.15 kg; p < 0.001), and peak torque of leg extensors (40.27 Nm; 95% CI: 28.98, 51.57 Nm, p < 0.001) and flexors (20.44 Nm; 95% CI: 12.10, 28.79 Nm; p < 0.001) increased in both groups. Vastus lateralis muscle thickness tended to increase, but this did not reach statistical significance (0.12 cm; 95% CI: −0.01, 0.26 cm; p = 0.08). No differences between groups were observed ( p > 0.05). These data indicate that increases in lean mass and strength in untrained participants are comparable when strength training and supplementing with soy or whey matched for leucine.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men

          Background Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare changes in myofibrillar protein synthesis (MPS) in elderly men at rest and after resistance exercise following ingestion of different doses of soy protein and compare the responses to those we previously observed with ingestion of whey protein isolate. Methods Thirty elderly men (age 71 ± 5 y) completed a bout of unilateral knee-extensor resistance exercise prior to ingesting no protein (0 g), or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively). We compared these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein isolate (W20 and W40). A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption in both exercised and non-exercised legs. Results Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs. W20 (P = 0.003). Rates of MPS for S20 were less than W20 (P = 0.02) and not different from 0 g (P = 0.41) in both exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested and post-exercise conditions (both P < 0.005); however S40 increased MPS greater than 0 g under post-exercise conditions (P = 0.04). Conclusions The relationship between protein intake and MPS is both dose and protein source-dependent, with isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of amino acid oxidation following ingestion of soy versus whey protein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling.

            Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whey protein supplementation during resistance training augments lean body mass.

              Compared to soy, whey protein is higher in leucine, absorbed quicker and results in a more pronounced increase in muscle protein synthesis. To determine whether supplementation with whey promotes greater increases in muscle mass compared to soy or carbohydrate, we randomized non-resistance-trained men and women into groups who consumed daily isocaloric supplements containing carbohydrate (carb; n = 22), whey protein (whey; n = 19), or soy protein (soy; n = 22). All subjects completed a supervised, whole-body periodized resistance training program consisting of 96 workouts (~9 months). Body composition was determined at baseline and after 3, 6, and 9 months. Plasma amino acid responses to resistance exercise followed by supplement ingestion were determined at baseline and 9 months. Daily protein intake (including the supplement) for carb, whey, and soy was 1.1, 1.4, and 1.4 g·kg body mass⁻¹, respectively. Lean body mass gains were significantly (p < 0.05) greater in whey (3.3 ± 1.5 kg) than carb (2.3 ± 1.7 kg) and soy (1.8 ± 1.6 kg). Fat mass decreased slightly but there were no differences between groups. Fasting concentrations of leucine were significantly elevated (20%) and postexercise plasma leucine increased more than 2-fold in whey. Fasting leucine concentrations were positively correlated with lean body mass responses. Despite consuming similar calories and protein during resistance training, daily supplementation with whey was more effective than soy protein or isocaloric carbohydrate control treatment conditions in promoting gains in lean body mass. These results highlight the importance of protein quality as an important determinant of lean body mass responses to resistance training.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                29 May 2020
                June 2020
                : 17
                : 11
                Affiliations
                [1 ]Department of Kinesiology, Point Loma Nazarene University, San Diego, CA 92106, USA
                [2 ]College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; mbuman@ 123456asu.edu (M.P.B.); carol.johnston@ 123456asu.edu (C.S.J.); christopher.wharton@ 123456asu.edu (C.M.W.)
                [3 ]Health Sciences, Central Washington University, Ellensburg, WA 98926, USA; Jared.Dickinson@ 123456cwu.edu
                [4 ]College of Health and Human Services, Northern Arizona University, Flagstaff, AZ 86011, USA; lynda.ransdell@ 123456nau.edu
                Author notes
                [* ]Correspondence: hlynch@ 123456pointloma.edu
                Article
                ijerph-17-03871
                10.3390/ijerph17113871
                7312446
                32486007
                28ffa48c-4e82-4178-b831-a713b10fdbd9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Public health

                leucine, muscle, skeletal, muscle strength

                Comments

                Comment on this article