71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exercise training reduces resting heart rate via downregulation of the funny channel HCN4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endurance athletes exhibit sinus bradycardia, that is a slow resting heart rate, associated with a higher incidence of sinus node (pacemaker) disease and electronic pacemaker implantation. Here we show that training-induced bradycardia is not a consequence of changes in the activity of the autonomic nervous system but is caused by intrinsic electrophysiological changes in the sinus node. We demonstrate that training-induced bradycardia persists after blockade of the autonomous nervous system in vivo in mice and in vitro in the denervated sinus node. We also show that a widespread remodelling of pacemaker ion channels, notably a downregulation of HCN4 and the corresponding ionic current, I f. Block of I f abolishes the difference in heart rate between trained and sedentary animals in vivo and in vitro. We further observe training-induced downregulation of Tbx3 and upregulation of NRSF and miR-1 (transcriptional regulators) that explains the downregulation of HCN4. Our findings provide a molecular explanation for the potentially pathological heart rate adaptation to exercise training.

          Abstract

          Endurance athletes are known to have a low resting heart rate. Here, D'Souza et al. propose that training-induced bradycardia is the result of electrophysiological changes in the sinus node, challenging the classical view that training-induced bradycardia is caused by increased activity of the autonomic nervous system.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough?

          B Jugdutt (2003)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria.

            The sinoatrial node initiates the heartbeat and controls the rate and rhythm of contraction, thus serving as the pacemaker of the heart. Despite the crucial role of the sinoatrial node in heart function, the mechanisms that underlie its specification and formation are not known. Tbx3, a transcriptional repressor required for development of vertebrates, is expressed in the developing conduction system. Here we show that Tbx3 expression delineates the sinoatrial node region, which runs a gene expression program that is distinct from that of the bordering atrial cells. We found lineage segregation of Tbx3-negative atrial and Tbx3-positive sinoatrial node precursor cells as soon as cardiac cells turn on the atrial gene expression program. Tbx3 deficiency resulted in expansion of expression of the atrial gene program into the sinoatrial node domain, and partial loss of sinoatrial node-specific gene expression. Ectopic expression of Tbx3 in mice revealed that Tbx3 represses the atrial phenotype and imposes the pacemaker phenotype on the atria. The mice displayed arrhythmias and developed functional ectopic pacemakers. These data identify a Tbx3-dependent pathway for the specification and formation of the sinoatrial node, and show that Tbx3 regulates the pacemaker gene expression program and phenotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18.

              The heartbeat originates within the sinoatrial node (SAN), a small structure containing <10,000 genuine pacemaker cells. If the SAN fails, the ∼5 billion working cardiomyocytes downstream of it become quiescent, leading to circulatory collapse in the absence of electronic pacemaker therapy. Here we demonstrate conversion of rodent cardiomyocytes to SAN cells in vitro and in vivo by expression of Tbx18, a gene critical for early SAN specification. Within days of in vivo Tbx18 transduction, 9.2% of transduced, ventricular cardiomyocytes develop spontaneous electrical firing physiologically indistinguishable from that of SAN cells, along with morphological and epigenetic features characteristic of SAN cells. In vivo, focal Tbx18 gene transfer in the guinea-pig ventricle yields ectopic pacemaker activity, correcting a bradycardic disease phenotype. Myocytes transduced in vivo acquire the cardinal tapering morphology and physiological automaticity of native SAN pacemaker cells. The creation of induced SAN pacemaker (iSAN) cells opens new prospects for bioengineered pacemakers.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                13 May 2014
                : 5
                : 3775
                Affiliations
                [1 ]Institute of Cardiovascular Sciences, University of Manchester , Manchester M13 9NT, UK
                [2 ]Department of Biosciences, University of Milano , Milano 20133, Italy
                [3 ]Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim 7491, Norway
                [4 ]These authors contributed equally to this work
                Author notes
                Article
                ncomms4775
                10.1038/ncomms4775
                4024745
                24825544
                2901d1ec-5fc8-4a70-b2be-3cc745732a06
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

                History
                : 21 January 2014
                : 01 April 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article