4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Gemini Planet Imager Exoplanet Survey: Dynamical Mass of the Exoplanet beta Pictoris b from Combined Direct Imaging and Astrometry

      Preprint
      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present new observations of the planet beta Pictoris b from 2018 with GPI, the first GPI observations following conjunction. Based on these new measurements, we perform a joint orbit fit to the available relative astrometry from ground-based imaging, the Hipparcos Intermediate Astrometric Data (IAD), and the Gaia DR2 position, and demonstrate how to incorporate the IAD into direct imaging orbit fits. We find a mass consistent with predictions of hot-start evolutionary models and previous works following similar methods, though with larger uncertainties: 12.8 [+5.3, -3.2] M_Jup. Our eccentricity determination of 0.12 [+0.04, -0.03] disfavors circular orbits. We consider orbit fits to several different imaging datasets, and find generally similar posteriors on the mass for each combination of imaging data. Our analysis underscores the importance of performing joint fits to the absolute and relative astrometry simultaneously, given the strong covariance between orbital elements. Time of conjunction is well constrained within 2.8 days of 2017 September 13, with the star behind the planet's Hill sphere between 2017 April 11 and 2018 February 16 (+/- 18 days). Following the recent radial velocity detection of a second planet in the system, beta Pic c, we perform additional two-planet fits combining relative astrometry, absolute astrometry, and stellar radial velocities. These joint fits find a significantly smaller mass for the imaged planet beta Pic b, of 8.0 +/- 2.6 M_Jup, in a somewhat more circular orbit. We expect future ground-based observations to further constrain the visual orbit and mass of the planet in advance of the release of Gaia DR4.

          Related collections

          Author and article information

          Journal
          25 November 2019
          Article
          1911.11273
          29023806-960d-45b5-99d0-2b99391942a7

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          29 Pages, 23 Figures. Accepted to AJ
          astro-ph.EP astro-ph.SR

          Planetary astrophysics,Solar & Stellar astrophysics
          Planetary astrophysics, Solar & Stellar astrophysics

          Comments

          Comment on this article