24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental pressures caused by population growth and consumerism require the development of resource recovery from waste, hence a circular economy approach. The production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) has become promising. MMC use the synergy of bio-catalytic activities from different microorganisms to transform complex organic feedstock, such as by-products from food production and food waste. In the absence of oxygen, the feedstock can be converted into biogas through the established anaerobic digestion (AD) approach. The potential of MMC has shifted to production of intermediate AD compounds as precursors for renewable chemicals. A particular set of anaerobic pathways in MMC fermentation, known as chain elongation, can occur under specific conditions producing medium chain carboxylic acids (MCCAs) with higher value than biogas and broader applicability. This review introduces the chain elongation pathway and other bio-reactions occurring during MMC fermentation. We present an overview of the complex feedstocks used, and pinpoint the main operational parameters for MCCAs production such as temperature, pH, loading rates, inoculum, head space composition, and reactor design. The review evaluates the key findings of MCCA production using MMC, and concludes by identifying critical research targets to drive forward this promising technology as a valorisation method for complex organic waste.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of anaerobic digestion process: a review.

          Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

            Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Challenges in microbial ecology: building predictive understanding of community function and dynamics

              The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                22 January 2019
                February 2019
                : 24
                : 3
                : 398
                Affiliations
                [1 ]EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK; V.De.Groof@ 123456bath.ac.uk
                [2 ]Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; T.C.Arnot@ 123456bath.ac.uk
                [3 ]Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; M.Coma@ 123456bath.ac.uk (M.C.); D.J.Leak@ 123456bath.ac.uk (D.J.L.)
                [4 ]Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK
                [5 ]Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
                Author notes
                [* ]Correspondence: a.lanham@ 123456bath.ac.uk ; Tel.: +44-1225-384544
                Author information
                https://orcid.org/0000-0002-8434-7778
                Article
                molecules-24-00398
                10.3390/molecules24030398
                6384945
                30678297
                2903aca5-3a3b-4b3d-889a-bce91a983fd7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 November 2018
                : 18 January 2019
                Categories
                Review

                anaerobic,carboxylate platform,chain elongation,circular economy,mixed microbial culture,medium chain carboxylic acid,organic waste,resource recovery,waste valorisation

                Comments

                Comment on this article