18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Elastic properties of bulk and low-dimensional materials using van der Waals density functional

      , , ,
      Physical Review B
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we present a high-throughput first-principles study of elastic properties of bulk and monolayer materials mainly using the vdW-DF-optB88 functional. We discuss the trends on the elastic response with respect to changes in dimensionality. We identify a relation between exfoliation energy and elastic constants for layered materials that can help to guide the search for vdW bonding in materials. We also predicted a few novel materials with auxetic behavior. The uncertainty in structural and elastic properties due to the inclusion of vdW interactions is discussed. We investigated 11,067 bulk and 257 monolayer materials. Lastly, we found that the trends in elastic constants for bulk and their monolayer counterparts can be very different. All the computational results are made publicly available at easy-to-use websites: https://www.ctcms.nist.gov/~knc6/JVASP.html and https://jarvis.nist.gov/ . Our dataset can be used to identify stiff and flexible materials for industrial applications.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Note on an Approximation Treatment for Many-Electron Systems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stretching and breaking of ultrathin MoS2.

              We report on measurements of the stiffness and breaking strength of monolayer MoS(2), a new semiconducting analogue of graphene. Single and bilayer MoS(2) is exfoliated from bulk and transferred to a substrate containing an array of microfabricated circular holes. The resulting suspended, free-standing membranes are deformed and eventually broken using an atomic force microscope. We find that the in-plane stiffness of monolayer MoS(2) is 180 ± 60 Nm(-1), corresponding to an effective Young's modulus of 270 ± 100 GPa, which is comparable to that of steel. Breaking occurs at an effective strain between 6 and 11% with the average breaking strength of 15 ± 3 Nm(-1) (23 GPa). The strength of strongest monolayer membranes is 11% of its Young's modulus, corresponding to the upper theoretical limit which indicates that the material can be highly crystalline and almost defect-free. Our results show that monolayer MoS(2) could be suitable for a variety of applications such as reinforcing elements in composites and for fabrication of flexible electronic devices.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                July 2018
                July 12 2018
                : 98
                : 1
                Article
                10.1103/PhysRevB.98.014107
                7067065
                32166206
                2906090f-911c-47d3-9bfd-6f594f026a1f
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article