Habitat loss is the leading cause of the global decline in biodiversity, but the influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. Here, we measure the relationship between fragmentation (the degree of fragmentation and the degree of patch isolation), matrix condition (measured as the extent of high human footprint levels), and the change in extinction risk of 4,426 terrestrial mammals. We find that the degree of fragmentation is strongly associated with changes in extinction risk, with higher predictive importance than life-history traits and human pressure variables. Importantly, we discover that fragmentation and the matrix condition are stronger predictors of risk than habitat loss and habitat amount. Moreover, the importance of fragmentation increases with an increasing deterioration of the matrix condition. These findings suggest that restoration of the habitat matrix may be an important conservation action for mitigating the negative effects of fragmentation on biodiversity.
The influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. This study measures the relationship between habitat fragmentation, matrix condition and the change in extinction risk of 4,426 terrestrial mammals, finding that fragmentation and matrix condition are stronger predictors of risk than habitat loss and habitat amount.