6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer metabolism has received renewed interest as a potential target for cancer therapy. In this study, we use a multi-scale modeling approach to interrogate the implications of three metabolic scenarios of potential clinical relevance: the Warburg effect, the reverse Warburg effect and glutamine addiction. At the intracellular level, we construct a network of central metabolism and perform flux balance analysis (FBA) to estimate metabolic fluxes; at the cellular level, we exploit this metabolic network to calculate parameters for a coarse-grained description of cellular growth kinetics; and at the multicellular level, we incorporate these kinetic schemes into the cellular automata of an agent-based model (ABM), iDynoMiCS. This ABM evaluates the reaction-diffusion of the metabolites, cellular division and motion over a simulation domain. Our multi-scale simulations suggest that the Warburg effect provides a growth advantage to the tumor cells under resource limitation. However, we identify a non-monotonic dependence of growth rate on the strength of glycolytic pathway. On the other hand, the reverse Warburg scenario provides an initial growth advantage in tumors that originate deeper in the tissue. The metabolic profile of stromal cells considered in this scenario allows more oxygen to reach the tumor cells in the deeper tissue and thus promotes tumor growth at earlier stages. Lastly, we suggest that glutamine addiction does not confer a selective advantage to tumor growth with glutamine acting as a carbon source in the tricarboxylic acid (TCA) cycle, any advantage of glutamine uptake must come through other pathways not included in our model (e.g., as a nitrogen donor). Our analysis illustrates the importance of accounting explicitly for spatial and temporal evolution of tumor microenvironment in the interpretation of metabolic scenarios and hence provides a basis for further studies, including evaluation of specific therapeutic strategies that target metabolism.

          Author summary

          Cancer metabolism is an emerging hallmark of cancer. In the past decade, a renewed focus on cancer metabolism has led to several distinct hypotheses describing the role of metabolism in cancer. To complement experimental efforts in this field, a scale-bridging computational framework is needed to allow rapid evaluation of emerging hypotheses in cancer metabolism. In this study, we present a multi-scale modeling platform and demonstrate the distinct outcomes in population-scale growth dynamics under different metabolic scenarios: the Warburg effect, the reverse Warburg effect and glutamine addiction. Within this modeling framework, we confirmed population-scale growth advantage enabled by the Warburg effect, provided insights into the symbiosis between stromal cells and tumor cells in the reverse Warburg effect and argued that the anaplerotic role of glutamine is not exploited by tumor cells to gain growth advantage under resource limitations. We point to the opportunity for this framework to help understand tissue-scale response to therapeutic strategies that target cancer metabolism while accounting for the tumor complexity at multiple scales.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

          An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamine addiction: a new therapeutic target in cancer.

            Most cancers depend on a high rate of aerobic glycolysis for their continued growth and survival. Paradoxically, some cancer cell lines also display addiction to glutamine despite the fact that glutamine is a nonessential amino acid that can be synthesized from glucose. The high rate of glutamine uptake exhibited by glutamine-dependent cells does not appear to result solely from its role as a nitrogen donor in nucleotide and amino acid biosynthesis. Instead, glutamine plays a required role in the uptake of essential amino acids and in maintaining activation of TOR (target of rapamycin) kinase. Moreover, in many cancer cells, glutamine is the primary mitochondrial substrate and is required for maintenance of mitochondrial membrane potential and integrity and for support of the NADPH production needed for redox control and macromolecular synthesis. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells

              The idea that conversion of glucose to ATP is an attractive target for cancer therapy has been supported in part by the observation that glucose deprivation induces apoptosis in rodent cells transduced with the proto-oncogene MYC, but not in the parental line. Here, we found that depletion of glucose killed normal human cells irrespective of induced MYC activity and by a mechanism different from apoptosis. However, depletion of glutamine, another major nutrient consumed by cancer cells, induced apoptosis depending on MYC activity. This apoptosis was preceded by depletion of the Krebs cycle intermediates, was prevented by two Krebs cycle substrates, but was unrelated to ATP synthesis or several other reported consequences of glutamine starvation. Our results suggest that the fate of normal human cells should be considered in evaluating nutrient deprivation as a strategy for cancer therapy, and that understanding how glutamine metabolism is linked to cell viability might provide new approaches for treatment of cancer.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: SoftwareRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: MethodologyRole: SoftwareRole: Writing – original draft
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                7 December 2018
                December 2018
                : 14
                : 12
                : e1006584
                Affiliations
                [1 ] Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
                [2 ] Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, United States of America
                Ecole Polytechnique Fédérale de Lausanne, SWITZERLAND
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-6385-9064
                Article
                PCOMPBIOL-D-18-00648
                10.1371/journal.pcbi.1006584
                6285468
                30532226
                2907e9a1-66ac-4e6b-906f-f0708a00b6d6
                © 2018 Shan et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 April 2018
                : 16 October 2018
                Page count
                Figures: 7, Tables: 1, Pages: 30
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000054, National Cancer Institute;
                Award ID: 1U54CA210184-01
                Award Recipient :
                The work described was supported by the Center on the Physics of Cancer Metabolism through Award Number 1U54CA210184-01 from the National Cancer Institute. https://www.cancer.gov/ The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. MS acknowledges partial support from a Fleming Scholar program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Physiology
                Cell Metabolism
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Connective Tissue Cells
                Stromal Cells
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Stromal Cells
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Stromal Cells
                Physical Sciences
                Chemistry
                Chemical Elements
                Oxygen
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Amino Acids
                Acidic Amino Acids
                Glutamine
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Amino Acids
                Acidic Amino Acids
                Glutamine
                Biology and Life Sciences
                Biochemistry
                Proteins
                Amino Acids
                Acidic Amino Acids
                Glutamine
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Carbohydrate Metabolism
                Glucose Metabolism
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Oxygen Metabolism
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Energy Metabolism
                Energy Metabolism in Cancer Cells
                Warburg Effect
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Energy Metabolism
                Energy Metabolism in Cancer Cells
                Warburg Effect
                Medicine and Health Sciences
                Physiology
                Physiological Processes
                Energy Metabolism
                Energy Metabolism in Cancer Cells
                Warburg Effect
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Glucose
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Glucose
                Custom metadata
                All data generated from the multi-scale model in this study are within the manuscript and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article