37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      S100A4 in cancer progression and metastasis: A systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastasis is the leading cause of cancer-related death and directly associates with cancer progression, resistance to anticancer therapy, and poor patient survival. Current efforts focusing on the underlying molecular mechanisms of cancer metastasis attract a special attention to cancer researchers. The epithelial-mesenchymal transition is a complex of molecular program during embryogenesis, inflammation, tissue fibrosis, and cancer progression and metastasis. S100A4, an important member of S100 family proteins, functions to increase the tumor progression and metastasis. The molecular mechanisms of S100A4 involving in the progression and metastasis are diverse in various malignant tumors. Detection of S100A4 expression becomes a promising candidate biomarker in cancer early diagnosis and prediction of cancer metastasis and therefore, S100A4 may be a therapeutic target. This review summarized up to date advancement on the role of S100A4 in human cancer development, progression, and metastasis and the underlying molecular events and then strategies to target S100A4 expression experimentally.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          S100 proteins in cancer.

          In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update on Survival in Osteosarcoma.

            Osteosarcoma is the most common primary bone malignancy in children. Treatment has evolved to include systemic chemotherapy and local control surgery. Although survival improved initially in a drastic fashion with this approach, recent decades have seen little to no further gains in this area. Limb salvage surgery evolved with effective chemotherapy and advances in imaging, and continues to improve in the recent era. This article serves as a review of survival in high-grade osteosarcoma: prognostic factors, advances in chemotherapy and surgery, late effects of chemotherapy and surgery in survivors, and future directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions of S100 proteins.

              The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                22 September 2017
                19 May 2017
                : 8
                : 42
                : 73219-73239
                Affiliations
                1 Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R.China
                2 Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
                3 Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
                Author notes
                Correspondence to: Shiwu Zhang, zhangshiwu666@ 123456aliyun.com
                Article
                18016
                10.18632/oncotarget.18016
                5641208
                29069865
                290e6f06-00be-4535-a915-6c213a5c2b56
                Copyright: © 2017 Fei et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 11 April 2017
                : 8 May 2017
                Categories
                Review

                Oncology & Radiotherapy
                s100a4,metastasis,malignant tumor,epithelial-mesenchymal transition
                Oncology & Radiotherapy
                s100a4, metastasis, malignant tumor, epithelial-mesenchymal transition

                Comments

                Comment on this article