20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial properties of chitosan and mode of action: a state of the art review.

          Owing to its high biodegradability, and nontoxicity and antimicrobial properties, chitosan is widely-used as an antimicrobial agent either alone or blended with other natural polymers. To broaden chitosan's antimicrobial applicability, comprehensive knowledge of its activity is necessary. The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action. Chitosan-mediated inhibition is affected by several factors can be classified into four types as intrinsic, environmental, microorganism and physical state, according to their respective roles. In this review, different physical states are comparatively discussed. Mode of antimicrobial action is discussed in parts of the active compound (chitosan) and the target (microorganisms) collectively and independently in same complex. Finally, the general antimicrobial applications of chitosan and perspectives about future studies in this field are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications

            Chitosan—one of the natural multifunctional polymers—due to its unique and versatile biological properties is regarded as a useful compound in medical and pharmaceutical technology. Recently, considerable research effort has been made in order to develop safe and efficient chitosan products. However, the problem of poor stability of chitosan-based systems restricts its practical applicability; thus, it has become a great challenge to establish sufficient shelf-life for chitosan formulations. Improved stability can be assessed by controlling the environmental factors, manipulating processing conditions (e.g., temperature), introducing a proper stabilizing compound, developing chitosan blends with another polymer, or modifying the chitosan structure using chemical or ionic agents. This review covers the influence of internal, environmental, and processing factors on the long-term stability of chitosan products. The aim of this paper is also to highlight the latest developments which enable the physicochemical properties of chitosan-based applications to be preserved upon storage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Photodynamic therapy for localized infections--state of the art.

              Photodynamic therapy (PDT) was discovered over 100 years ago by observing the killing of microorganisms when harmless dyes and visible light were combined in vitro. Since then it has primarily been developed as a treatment for cancer, ophthalmologic disorders and in dermatology. However, in recent years interest in the antimicrobial effects of PDT has revived and it has been proposed as a therapy for a large variety of localized infections. This revival of interest has largely been driven by the inexorable increase in drug resistance among many classes of pathogen. Advantages of PDT include equal killing effectiveness regardless of antibiotic resistance, and a lack of induction of PDT resistance. Disadvantages include the cessation of the antimicrobial effect when the light is turned off, and less than perfect selectivity for microbial cells over host tissue. This review will cover the use of PDT to kill or inactivate pathogens in ex vivo tissues and in biological materials such as blood. PDT has been successfully used to kill pathogens and even to save life in several animal models of localized infections such as surface wounds, burns, oral sites, abscesses and the middle ear. A large number of clinical studies of PDT for viral papillomatosis lesions and for acne refer to its antimicrobial effect, but it is unclear how important this microbial killing is to the overall therapeutic outcome. PDT for periodontitis is a rapidly growing clinical application and other dental applications are under investigation. PDT is being clinically studied for other dermatological infections such as leishmaniasis and mycobacteria. Antimicrobial PDT will become more important in the future as antibiotic resistance is only expected to continue to increase.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                08 June 2017
                June 2017
                : 15
                : 6
                : 167
                Affiliations
                [1 ]Department of Food Science and Technology, Pukyong National University, Busan 48547, Korea; kjhy1126@ 123456naver.com (J.-H.K.); ksonghee93@ 123456gmail.com (S.-H.K.)
                [2 ]Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5C5, Canada; day852@ 123456mail.usask.ca
                [3 ]Korea Food Research Institute, Sungnam 13539, Korea; dalgoo52@ 123456gmail.com
                [4 ]Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; jungoh@ 123456pknu.ac.kr (J.O.); wkjung@ 123456pknu.ac.kr (W.-K.J.)
                [5 ]Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea
                Author notes
                [* ]Correspondence: ymkim@ 123456pknu.ac.kr ; Tel.: +82-051-629-5832
                Article
                marinedrugs-15-00167
                10.3390/md15060167
                5484117
                28594356
                29177574-38c7-4065-a11f-11f19daba87d
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 February 2017
                : 06 June 2017
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                acne vulgaris,antibiotic resistance,chitosan-phytochemical conjugates,synergistic antibacterial effect

                Comments

                Comment on this article