10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opportunities for exercise during pullet rearing, Part I: Effect on the musculoskeletal characteristics of pullets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased load-bearing exercise improves bone quality characteristics in a variety of species, including laying hens. Providing increased opportunities for exercise during the pullet rearing phase, a period of substantial musculoskeletal growth, offers a proactive approach to reducing osteoporosis by improving bone composition. The main objective of this study was to determine whether differing opportunities for exercise during rearing influences pullet musculoskeletal characteristics. Two flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either standard, conventional cages (Conv) or an aviary rearing system (Avi) from day-old chicks until 16 wk of age. The keel bone and the muscles and long bones of the wings and legs were collected at 16 wk to measure muscle growth differences between rearing treatments and quantify bone quality characteristics using quantitative computed tomography (QCT) and bone breaking strength (BBS) assessment. Keel bone characteristics and muscle weights were adjusted for BW and analyses for QCT and BBS included BW as a covariate. At 16 wk of age, rearing system had an effect on the majority of keel bone characteristics ( P < 0.05). The length of the keel metasternum, caudal tip cartilage length, and the overall percentage of cartilage present on the keel at 16 wk was greater in the Avi pullets compared to the Conv pullets ( P < 0.01). Wing and breast muscle weights of the Avi pullets were greater than the Conv pullets ( P < 0.001), but leg muscle weights were greater in the Conv pullets ( P = 0.026). Avi pullets had greater total bone density, total cross-sectional area, cortical cross-sectional area, total bone mineral content, and cortical bone mineral content than Conv pullets for the radius, humerus, and tibia ( P < 0.001). Avi pullets had greater BBS compared to the Conv pullets for the radius, humerus, and tibia ( P < 0.01). Increased opportunities for exercise offered by the aviary rearing system increased muscle and bone growth characteristics in pullets at 16 wk of age.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study.

          To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How does exercise affect bone development during growth?

            It is increasingly accepted that osteoporosis is a paediatric issue. The prepubertal human skeleton is quite sensitive to the mechanical stimulation elicited by physical activity. To achieve the benefits for bone deriving from physical activity, it is not necessary to perform high volumes of exercise, since a notable osteogenic effect may be achieved with just 3 hours of participation in sports. Physical activity or participation in sport should start at prepubertal ages and should be maintained through the pubertal development to obtain the maximal peak bone mass potentially achievable. Starting physical activity prior to the pubertal growth spurt stimulates both bone and skeletal muscle hypertrophy to a greater degree than observed with normal growth in non-physically active children. High strain-eliciting sport like gymnastics, or participation in sports or weight-bearing physical activities like football or handball, are strongly recommended to increase the peak bone mass. Moreover, the increase in lean mass is the most important predictor for bone mineral mass accrual during prepubertal growth throughout the population. Since skeletal muscle is the primary component of lean mass, participation in sport could have not only a direct osteogenic effect, but also an indirect effect by increasing muscle mass and hence the tensions generated on bones during prepubertal years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Effect of rearing environment on bone growth of pullets1

              Alternative housing systems for laying hens provide mechanical loading and help reduce bone loss. Moreover, achieving greater peak bone mass during pullet phase can be crucial to prevent fractures in the production period. The aim of this study was to determine the housing system effects on bone quality of pullets. Tibiae and humeri of White Leghorn pullets reared in conventional cages (CCs) and a cage-free aviary (AV) system were studied. At 16 wk, 120 birds at random from each housing system were euthanized. Right and left tibiae and humeri were collected and further analyzed. Cortical bone density and thickness were measured using computed tomography. Periosteal and endosteal dimensions were measured at the fracture site during mechanical testing. At 4, 8, 12, and 16 wk, serum concentrations of osteocalcin and hydroxylysyl pyridinoline were analyzed as markers of bone formation and resorption. Cortical bone density was higher (P < 0.05) in humeri of AV pullets, and tibiae were denser (P < 0.05) for AV pullets in the distal section of the bone compared to CC pullets. Ash content was higher (P < 0.05) in AV humeri with no difference in tibiae ash content. Tibiae and humeri of AV pullets had a thicker cortex than the CC pullets (P < 0.05). Additionally, the tibiae and humeri of AV pullets had greater (P < 0.05) second moment of areas than the CC pullets. While some bone material properties between groups were different (P < 0.05), the differences were so small (< 7%) that they likely have no clinical significance. Serum osteocalcin concentrations were not different between the treatments, but hydroxylsyl pyridinoline concentrations were higher in CC pullets at 12 wk compared to the AV pullets and the effect reversed at 16 wk (P < 0.05). These findings indicate that tibiae and humeri respond differently to load bearing activities during growth. The improved load bearing capability and stiffness in bones of AV pullets were related to increased cross-sectional geometry.
                Bookmark

                Author and article information

                Journal
                Poult Sci
                Poult. Sci
                ps
                Poultry Science
                Poultry Science Association, Inc.
                0032-5791
                1525-3171
                August 2017
                31 March 2017
                31 March 2017
                : 96
                : 8
                : 2509-2517
                Affiliations
                [* ]Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
                []Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
                []Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada
                [§ ]Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
                [# ]Monogastric Science Research Centre, SRUC Auchincruive, Ayr, KA6 5HW United Kingdom
                Author notes
                [1 ]Corresponding author: twidowsk@ 123456uoguelph.ca
                Article
                pex059
                10.3382/ps/pex059
                5850348
                28379533
                29198cfb-f3be-47e2-962f-4eea1d346713
                © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

                History
                : 25 February 2017
                : 01 December 2016
                Page count
                Pages: 9
                Categories
                Animal Well-Being and Behavior

                pullet,keel bone,musculoskeletal growth,exercise,rearing system

                Comments

                Comment on this article