Blog
About

15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function.

      The Journal of Biological Chemistry

      Phosphorylation, Amino Acid Sequence, Animals, Cell Line, Humans, Mice, Mice, Inbred C3H, Mitosis, Molecular Sequence Data, Peptide Mapping, Protein Binding, Protein-Tyrosine Kinases, metabolism, Receptor, Epidermal Growth Factor, Structure-Activity Relationship, Tumor Cells, Cultured, Tyrosine, src Homology Domains, src-Family Kinases

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence indicates that interactions between the epidermal growth factor receptor (EGFR) and the nonreceptor tyrosine kinase c-Src may contribute to an aggressive phenotype in multiple human tumors. Previous work from our laboratory demonstrated that murine fibroblasts which overexpress both these tyrosine kinases display synergistic increases in DNA synthesis, soft agar growth, and tumor formation in nude mice, and increased phosphorylation of the receptor substrates Shc and phospholipase gamma as compared with single overexpressors. These parameters correlated with the ability of c-Src and EGFR to form an EGF-dependent heterocomplex in vivo. Here we provide evidence that association between c-Src and EGFR can occur directly, as shown by receptor overlay experiments, and that it results in the appearance of two novel tyrosine phosphorylations on the receptor that are seen both in vitro and in vivo following EGF stimulation. Edman degradation analyses and co-migration of synthetic peptides with EGFR-derived tryptic phosphopeptides identify these sites as Tyr845 and Tyr1101. Tyr1101 lies within the carboxyl-terminal region of the EGFR among sites of receptor autophosphorylation, while Tyr845 resides in the catalytic domain, in a position analogous to Tyr416 of c-Src. Phosphorylation of Tyr416 and homologous residues in other tyrosine kinase receptors has been shown to be required for or to increase catalytic activity, suggesting that c-Src can influence EGFR activity by mediating phosphorylation of Tyr845. Indeed, EGF-induced phosphorylation of Tyr845 was increased in MDA468 human breast cancer cells engineered to overexpress c-Src as compared with parental MDA 468 cells. Furthermore, transient expression of a Y845F variant EGFR in murine fibroblasts resulted in an ablation of EGF-induced DNA synthesis to nonstimulated levels. Together, these data support the hypothesis that c-Src-mediated phosphorylation of EGFR Tyr845 is involved in regulation of receptor function, as well as in tumor progression.

          Related collections

          Author and article information

          Journal
          10075741

          Comments

          Comment on this article