6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

          Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single layer graphene with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on Si/SiO2 substrates showed electron mobilities as high as 4050 cm2V-1s-1 at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Raman Fingerprint of Graphene

            Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Graphene Photonics and Optoelectronics

              The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                September 2014
                September 2014
                : 105
                : 9
                : 091111
                Affiliations
                [1 ]College of Electronic Information, Sichuan University, Chengdu 610064, China
                [2 ]Optical Nanostructures Laboratory, Columbia University, New York, New York 10027, USA
                [3 ]Mechanical Engineering, Columbia University, New York, New York 10027, USA
                [4 ]The Institute of Microelectronics, Singapore 117685, Singapore
                [5 ]North China Research Institute of Electro-Optics, Beijing 100015, China
                Article
                10.1063/1.4894830
                2922e5f7-dd48-4b55-b2cf-9a88d94ea000
                © 2014
                History

                Comments

                Comment on this article