13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel Transgenic Rice-Based Vaccines

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.

          Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences.

            During the 10 days commencing April 29, 2013, the Iowa State University Veterinary Diagnostic Laboratory received the first 4 of many submissions from swine farms experiencing explosive epidemics of diarrhea and vomiting affecting all ages, with 90-95% mortality in suckling pigs. Histology revealed severe atrophy of villi in all segments of the small intestines with occasional villus-epithelial syncytial cells, but testing for rotaviruses and Transmissible gastroenteritis virus (Alphacoronavirus 1) were negative. Negative-staining electron microscopy of feces revealed coronavirus-like particles and a pan-coronavirus polymerase chain reaction (PCR) designed to amplify a conserved region of the polymerase gene for all members in the family Coronaviridae produced expected 251-bp amplicons. Subsequent sequencing and analysis revealed 99.6-100% identity among the PCR amplicons from the 4 farms and 97-99% identity to the corresponding portion of the polymerase gene of Porcine epidemic diarrhea virus (PEDV) strains, with the highest identity (99%) to strains from China in 2012. Findings were corroborated at National Veterinary Services Laboratories using 2 nested S-gene and 1 nested N-gene PCR tests where the sequenced amplicons also had the highest identity with 2012 China strains. Whole genome sequence for the virus from 2 farms in 2 different states using next-generation sequencing technique was compared to PEDV sequences available in GenBank. The 2013 U.S. PEDV had 96.6-99.5% identity with all known PEDV strains and the highest identity (>99.0%) to some of the 2011-2012 Chinese strains. The nearly simultaneous outbreaks of disease, and high degree of homology (99.6-100%) between the PEDV strains from the 4 unrelated farms, suggests a common source of virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What it will take to feed 5.0 billion rice consumers in 2030.

              Major advances have occurred in rice production due to adoption of green revolution technology. Between 1966 and 2000, the population of densely populated low income countries grew by 90% but rice production increased by 130% from 257 million tons in 1966 to 600 million tons in 2000. However, the population of rice consuming countries continues to grow and it is estimated that we will have to produce 40 more rice in 2030. This increased demand will have to be met from less land, with less water, less labor and fewer chemicals. To meet the challenge of producing more rice from suitable lands we need rice varieties with higher yield potential and greater yield stability. Various strategies for increasing the rice yield potential being employed include: (1) conventional hybridization and selection procedures, (2) ideotype breeding, (3) hybrid breeding, (4) wide hybridization and (5) genetic engineering. Various conventional and biotechnology approach are being employed to develop durable resistance to diseases and insect and for tolerance to abiotic stresses. The availability of the rice genome sequence will now permit identification of the function of each of 60,000 rice genes through functional genomics. Once the function of a gene is identified, it will be possible to develop new rice varieties by introduction of the gene through traditional breeding in combination with marker aided selection or direct engineering of genes into rice varieties.
                Bookmark

                Author and article information

                Journal
                Archivum Immunologiae et Therapiae Experimentalis
                Arch. Immunol. Ther. Exp.
                Springer Nature
                0004-069X
                1661-4917
                April 2015
                July 16 2014
                : 63
                : 2
                : 87-99
                Article
                10.1007/s00005-014-0303-0
                25027548
                29473291-2175-4f41-bd5e-44a9832f4225
                © 2014
                History

                Comments

                Comment on this article