+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Stroke in Africa: profile, progress, prospects and priorities


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Stroke is a leading cause of disability, dementia and death worldwide. Approximately 70% of deaths from stroke and 87% of stroke-related disability occur in low-income and middle-income countries. At the turn of the century, the most common diseases in Africa were communicable diseases, whereas non-communicable diseases, including stroke, were considered rare, particularly in sub-Saharan Africa. However, evidence indicates that, today, Africa could have up to 2–3-fold greater rates of stroke incidence and higher stroke prevalence than western Europe and the USA. In Africa, data published within the past decade show that stroke has an annual incidence rate of up to 316 per 100,000, a prevalence of up to 1,460 per 100,000 and a 3-year fatality rate greater than 80%. Moreover, many Africans have a stroke within the fourth to sixth decades of life, with serious implications for the individual, their family and society. This age profile is particularly important as strokes in younger people tend to result in a greater loss of self-worth and socioeconomic productivity than in older individuals. Emerging insights from research into stroke epidemiology, genetics, prevention, care and outcomes offer great prospects for tackling the growing burden of stroke on the continent. In this article, we review the unique profile of stroke in Africa and summarize current knowledge on stroke epidemiology, genetics, prevention, acute care, rehabilitation, outcomes, cost of care and awareness. We also discuss knowledge gaps, emerging priorities and future directions of stroke medicine for the more than 1 billion people who live in Africa.


          In this Review, Akinyemi and colleagues provide an overview of stroke in Africa, including epidemiology, risk factors, genetics and available stroke services. The authors also discuss the future of stroke care in Africa, highlighting the promise of biobanking and novel leadership initiatives.

          Key points

          • The annual incidence rate of stroke in Africa is up to 316 per 100,000 individuals, which is within the highest incidence rates in the world, and the prevalence rate of 1,460 per 100,000 reported in one region of Nigeria, western Africa, is clearly among the highest in the world.

          • Hypertension remains the most important modifiable risk factor for stroke in Africa but others include diabetes mellitus, dyslipidaemia, obesity, stress, smoking, alcohol use, physical inactivity and an unhealthy diet.

          • Africa has a slightly greater preponderance of small vessel disease-related stroke and intracerebral haemorrhagic lesions than elsewhere in the world.

          • The results of the first African genome-wide association study on stroke are expected soon but genes already known to modify stroke risk in African populations include IL6, APOE, APOL1, CYB11B2 and CDKN2A/2B.

          • Pragmatic approaches to improving stroke care in Africa include regular monitoring of risk factors and health services, implementation of prevention strategies, improving acute care and rehabilitation services, and encouraging task sharing; the emergence of standalone stroke care and stroke units in some North African and sub-Saharan countries is encouraging.

          • Numerous challenges face stroke medicine in Africa but awareness and the concerted efforts towards securing support for more stroke research and services via organizations such as the African Stroke Organization, World Stroke Organization and WHO hold much promise.

          Related collections

          Most cited references 324

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic structure and history of Africans and African Americans.

          Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

            Summary Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding Bill & Melinda Gates Foundation.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

              Summary Background Stroke is a leading cause of mortality and disability worldwide and the economic costs of treatment and post-stroke care are substantial. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic, comparable method of quantifying health loss by disease, age, sex, year, and location to provide information to health systems and policy makers on more than 300 causes of disease and injury, including stroke. The results presented here are the estimates of burden due to overall stroke and ischaemic and haemorrhagic stroke from GBD 2016. Methods We report estimates and corresponding uncertainty intervals (UIs), from 1990 to 2016, for incidence, prevalence, deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs). DALYs were generated by summing YLLs and YLDs. Cause-specific mortality was estimated using an ensemble modelling process with vital registration and verbal autopsy data as inputs. Non-fatal estimates were generated using Bayesian meta-regression incorporating data from registries, scientific literature, administrative records, and surveys. The Socio-demographic Index (SDI), a summary indicator generated using educational attainment, lagged distributed income, and total fertility rate, was used to group countries into quintiles. Findings In 2016, there were 5·5 million (95% UI 5·3 to 5·7) deaths and 116·4 million (111·4 to 121·4) DALYs due to stroke. The global age-standardised mortality rate decreased by 36·2% (−39·3 to −33·6) from 1990 to 2016, with decreases in all SDI quintiles. Over the same period, the global age-standardised DALY rate declined by 34·2% (−37·2 to −31·5), also with decreases in all SDI quintiles. There were 13·7 million (12·7 to 14·7) new stroke cases in 2016. Global age-standardised incidence declined by 8·1% (−10·7 to −5·5) from 1990 to 2016 and decreased in all SDI quintiles except the middle SDI group. There were 80·1 million (74·1 to 86·3) prevalent cases of stroke globally in 2016; 41·1 million (38·0 to 44·3) in women and 39·0 million (36·1 to 42·1) in men. Interpretation Although age-standardised mortality rates have decreased sharply from 1990 to 2016, the decrease in age-standardised incidence has been less steep, indicating that the burden of stroke is likely to remain high. Planned updates to future GBD iterations include generating separate estimates for subarachnoid haemorrhage and intracerebral haemorrhage, generating estimates of transient ischaemic attack, and including atrial fibrillation as a risk factor. Funding Bill & Melinda Gates Foundation

                Author and article information

                Nat Rev Neurol
                Nat Rev Neurol
                Nature Reviews. Neurology
                Nature Publishing Group UK (London )
                15 September 2021
                : 1-23
                [1 ]GRID grid.9582.6, ISNI 0000 0004 1794 5983, Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, , University of Ibadan, ; Ibadan, Nigeria
                [2 ]GRID grid.9582.6, ISNI 0000 0004 1794 5983, Centre for Genomic and Precision Medicine, College of Medicine, , University of Ibadan, ; Ibadan, Nigeria
                [3 ]GRID grid.412438.8, ISNI 0000 0004 1764 5403, Department of Neurology, , University College Hospital, ; Ibadan, Nigeria
                [4 ]GRID grid.1006.7, ISNI 0000 0001 0462 7212, Neurovascular Research Group, Translational and Clinical Research Institute, , Newcastle University, ; Newcastle, UK
                [5 ]GRID grid.266102.1, ISNI 0000 0001 2297 6811, Department of Neurology, , University of California, ; San Francisco, CA USA
                [6 ]GRID grid.9829.a, ISNI 0000000109466120, Kwame Nkrumah University of Science & Technology, ; Kumasi, Ghana
                [7 ]GRID grid.415450.1, ISNI 0000 0004 0466 0719, Komfo Anokye Teaching Hospital, ; Kumasi, Ghana
                [8 ]GRID grid.414821.a, Department of Medicine, , Federal Medical Centre Abeokuta, ; Ibadan, Nigeria
                [9 ]GRID grid.7776.1, ISNI 0000 0004 0639 9286, Department of Neurology, Kasr Alainy School of Medicine, , Cairo University, ; Cairo, Egypt
                [10 ]Department of Neurology, University Teaching Hospital, Parakou, Benin
                [11 ]GRID grid.9582.6, ISNI 0000 0004 1794 5983, Department of Medicine, , University College Hospital/College of Medicine, University of Ibadan, ; Ibadan, Nigeria
                [12 ]GRID grid.8974.2, ISNI 0000 0001 2156 8226, Heart and Stroke Foundation South Africa/University of the Western Cape, ; Cape Town, South Africa
                [13 ]GRID grid.8295.6, Department of Cardiology, , Faculty of Medicine, Eduardo Mondlane University, ; Maputo, Mozambique
                [14 ]GRID grid.416512.5, ISNI 0000 0004 0402 1394, Department of Medicine, , North Tyneside General Hospital, ; Tyne and Wear, UK
                [15 ]GRID grid.1006.7, ISNI 0000 0001 0462 7212, Population Health Sciences Institute, , Newcastle University, ; Newcastle upon Tyne, UK
                © Springer Nature Limited 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                Review Article

                stroke, epidemiology


                Comment on this article