Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning for Rapid Sparse MR Fingerprinting Reconstruction

      Preprint

      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PURPOSE: Demonstrate a novel fast method for reconstruction of multi-dimensional MR Fingerprinting (MRF) data using Deep Learning methods. METHODS: A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed using the Bloch equations. The accuracy of the NN reconstruction of noisy data is compared to conventional MRF template matching as a function of training data size, and quantified in a both simulated numerical brain phantom data and acquired data from the ISMRM/NIST phantom. The utility of the method is demonstrated in a healthy subject in vivo at 1.5 T. RESULTS: Network training required 10 minutes and once trained, data reconstruction required approximately 10 ms. Reconstruction of simulated brain data using the NN resulted in a root-mean-square error (RMSE) of 3.5 ms for T1 and 7.8 ms for T2. The RMSE for the NN trained on sparse dictionaries was approximately 6 fold lower for T1 and 2 fold lower for T2 than conventional MRF dot-product dictionary matching on the same dictionaries. Phantom measurements yielded good agreement (R2=0.99) between the T1 and T2 estimated by the NN and reference values from the ISMRM/NIST phantom. CONCLUSION: Reconstruction of MRF data with a NN is accurate, 300 fold faster and more robust to noise and undersampling than conventional MRF dictionary matching.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: not found
          • Article: not found

          Multilayer feedforward networks are universal approximators

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Learning in Neural Networks: An Overview

              (2014)
            In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design and construction of a realistic digital brain phantom.

              After conception and implementation of any new medical image processing algorithm, validation is an important step to ensure that the procedure fulfills all requirements set forth at the initial design stage. Although the algorithm must be evaluated on real data, a comprehensive validation requires the additional use of simulated data since it is impossible to establish ground truth with in vivo data. Experiments with simulated data permit controlled evaluation over a wide range of conditions (e.g., different levels of noise, contrast, intensity artefacts, or geometric distortion). Such considerations have become increasingly important with the rapid growth of neuroimaging, i.e., computational analysis of brain structure and function using brain scanning methods such as positron emission tomography and magnetic resonance imaging. Since simple objects such as ellipsoids or parallelepipedes do not reflect the complexity of natural brain anatomy, we present the design and creation of a realistic, high-resolution, digital, volumetric phantom of the human brain. This three-dimensional digital brain phantom is made up of ten volumetric data sets that define the spatial distribution for different tissues (e.g., grey matter, white matter, muscle, skin, etc.), where voxel intensity is proportional to the fraction of tissue within the voxel. The digital brain phantom can be used to simulate tomographic images of the head. Since the contribution of each tissue type to each voxel in the brain phantom is known, it can be used as the gold standard to test analysis algorithms such as classification procedures which seek to identify the tissue "type" of each image voxel. Furthermore, since the same anatomical phantom may be used to drive simulators for different modalities, it is the ideal tool to test intermodality registration algorithms. The brain phantom and simulated MR images have been made publicly available on the Internet (http://www.bic.mni.mcgill.ca/brainweb).
                Bookmark

                Author and article information

                Journal
                14 October 2017
                Article
                1710.05267

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                21 pages, 7 figures
                cs.CV

                Comments

                Comment on this article