89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The complex genome of rapeseed ( Brassica napus) is not well understood despite the economic importance of the species. Good knowledge of sequence variation is needed for genetics approaches and breeding purposes. We used a diversity set of B. napus representing eight different germplasm types to sequence genome-wide distributed restriction-site associated DNA (RAD) fragments for polymorphism detection and genotyping.

          Results

          More than 113,000 RAD clusters with more than 20,000 single nucleotide polymorphisms (SNPs) and 125 insertions/deletions were detected and characterized. About one third of the RAD clusters and polymorphisms mapped to the Brassica rapa reference sequence. An even distribution of RAD clusters and polymorphisms was observed across the B. rapa chromosomes, which suggests that there might be an equal distribution over the Brassica oleracea chromosomes, too. The representation of Gene Ontology (GO) terms for unigenes with RAD clusters and polymorphisms revealed no signature of selection with respect to the distribution of polymorphisms within genes belonging to a specific GO category.

          Conclusions

          Considering the decreasing costs for next-generation sequencing, the results of our study suggest that RAD sequencing is not only a simple and cost-effective method for high-density polymorphism detection but also an alternative to SNP genotyping from transcriptome sequencing or SNP arrays, even for species with complex genomes such as B. napus.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          BRAD, the genetics and genomics database for Brassica plants

          Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42). It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE), B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing.

            Oilseed rape (Brassica napus) was selected as an example of a polyploid crop, and the Solexa sequencing system was used to generate approximately 20 million expressed sequence tags (ESTs) from each of two cultivars: Tapidor and Ningyou 7. A methodology and computational tools were developed to exploit, as a reference sequence, a publicly available set of approximately 94,000 Brassica species unigenes. Sequences transcribed in the leaves of juvenile plants were aligned to approximately 26 Mb of the reference sequences. The aligned sequences enabled the detection of 23,330-41,593 putative single nucleotide polymorphisms (SNPs) between the cultivars, depending on the read depth stringency applied. The majority of the detected polymorphisms (87.5-91.2%) were of a type indicative of transcription from homoeologous genes from the two parental genomes within oilseed rape, and are termed here 'hemi-SNPs'. The overall estimated polymorphism rate (approximately 0.047%-0.084%) is consistent with that previously observed between the cultivars analysed. To demonstrate the heritability of SNPs and to assess their suitability for applications such as linkage map construction and association genetics, approximately nine million ESTs were generated, using the Solexa system, from each of four lines of a doubled haploid mapping population derived from a cross between Tapidor and Ningyou 7. Computational tools were developed to score the alleles present in these lines for each of the potential SNPs identified between their parents. For a specimen region of the genome analysed in detail, segregation of alleles largely, although not entirely, followed the pattern expected for genomic markers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis map-based cloning in the post-genome era.

              Map-based cloning is an iterative approach that identifies the underlying genetic cause of a mutant phenotype. The major strength of this approach is the ability to tap into a nearly unlimited resource of natural and induced genetic variation without prior assumptions or knowledge of specific genes. One begins with an interesting mutant and allows plant biology to reveal what gene or genes are involved. Three major advances in the past 2 years have made map-based cloning in Arabidopsis fairly routine: sequencing of the Arabidopsis genome, the availability of more than 50,000 markers in the Cereon Arabidopsis Polymorphism Collection, and improvements in the methods used for detecting DNA polymorphisms. Here, we describe the Cereon Collection and show how it can be used in a generic approach to mutation mapping in Arabidopsis. We present the map-based cloning of the VTC2 gene as a specific example of this approach.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2012
                24 June 2012
                : 13
                : 281
                Affiliations
                [1 ]Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
                [2 ]Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
                [3 ]Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
                Article
                1471-2164-13-281
                10.1186/1471-2164-13-281
                3442993
                22726880
                296e1209-383a-4de9-abb4-61d3089e2139
                Copyright ©2012 Bus et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 March 2012
                : 24 June 2012
                Categories
                Research Article

                Genetics
                brassica napus,genetic diversity,restriction-site associated dna,single nucleotide polymorphism,next-generation sequencing,genotyping by sequencing

                Comments

                Comment on this article