4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Composición corporal, metabolismo mineral y función endocrina del tejido adiposo: influencia de un suplemento nutricional de propóleo Translated title: Body composition, mineral metabolism, and endocrine function of adipose tissue: influence of a nutritional supplement of propolis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Introducción: el propóleo y sus componentes influyen en el metabolismo lipídico; sin embargo, se desconoce su efecto sobre la composición corporal y el metabolismo mineral. Objetivos: determinar el efecto de la suplementación de la dieta con propóleo natural sobre la composición corporal, el metabolismo basal y mineral, y la función endocrina del tejido adiposo. Material y métodos: veinte ratas albinas Wistar macho (8 semanas) se dividieron en dos grupos de 10 animales cada uno. Las ratas fueron alimentadas con dos tipos diferentes de dietas durante 90 días: una dieta estándar para el grupo de control (grupo C) y la misma dieta estándar + un 2 % de propóleo (grupo P). Se determinaron las hormonas tiroideas, la grelina, la leptina, la adiponectina y la insulina, los ácidos grasos no esterificados (AGNE) en el plasma, la composición corporal (masa magra, masa grasa y agua corporal) y el depósito de minerales en órganos diana (bazo, cerebro, corazón, pulmones, testículos, riñones y fémur). Resultados: los niveles plasmáticos de hormona estimulante del tiroides (TSH), triyodotironina (T3) y tiroxina (T4) no mostraron diferencias tras la ingesta del suplemento de propóleo, mientras que los de grelina y adiponectina disminuyeron (p < 0,01 y p < 0,05, respectivamente) y los de insulina (p < 0,01), leptina (p < 0,05) y AGNE (p < 0,05) aumentaron cuando la dieta se suplementó con propóleo al 2 %. Se redujeron el peso y la grasa corporal (p < 0,05), incrementándose la masa magra. Por último, el suplemento de propóleo mejoró el depósito de calcio en el bazo, los pulmones, los testículos y el fémur (p < 0,05). Conclusión: el suplemento de propóleo al 2 % de la dieta produjo una disminución de la secreción de grelina y adiponectina, incrementando la concentración de AGNE y aumentando la tasa de secreción de insulina. Además, el suplemento de propóleo indujo una mejora del depósito de calcio en los órganos diana sin afectar al resto de minerales, lo que en conjunto mejora la composición corporal al inducir una reducción del peso y del tejido adiposo visceral, mejorando la masa magra.

          Translated abstract

          Abstract Introduction: propolis and its components influence lipid metabolism; however, its effect on body composition and mineral metabolism remains unknown. Objectives: to determine the effect of natural propolis supplementation on body composition, mineral metabolism, and the endocrine function of adipose tissue. Material and methods: twenty albino male Wistar rats (8 weeks old) were divided into two groups of 10 animals each. The rats were fed two different types of diet for 90 days: a standard diet for the control group (group C) and the same standard diet + 2 % propolis (group P). Thyroid hormones, ghrelin, leptin, adiponectin and insulin, non-esterified fatty acids (NEFA) in plasma, body composition (lean mass, fat mass and body water), and mineral deposition in target organs (spleen, brain, heart, lungs, testicles, kidneys and femur) were assessed. Results: thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) did not show any differences after supplementation with propolis, while ghrelin and adiponectin decreased (p < 0.01 and p < 0.05, respectively) and insulin (p < 0.01), leptin (p < 0.05) and NEFA (p < 0.05) increased when 2 % propolis was supplied, while weight and body fat were reduced (p < 0.05) and lean mass increased. Lastly, the propolis supplement improves calcium deposition in the spleen, lungs, testes, and femur (p < 0.05). Conclusion: propolis supplementation of the diet (2 %) causes a decrease in the secretion of ghrelin and adiponectin, increasing the release of non-esterified fatty acids and the rate of insulin secretion. In addition, propolis supplementation induces an improvement in calcium deposition in target organs without affecting the rest of minerals, which improves body composition by inducing a reduction in weight and visceral adipose tissue, and improvement in lean mass.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Recent Advances in the Chemical Composition of Propolis

          Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas.

            The aim of the present study was the evaluation of possible protective effects of quercetin (QE) against beta-cell damage in experimental streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg kg(-1) for diabetes induction. QE (15 mg kg(-1) day, intraperitoneal (i.p.) injection) was injected for 3 days prior to STZ administration; these injections were continued to the end of the study (for 4 weeks). It has been believed that oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). In order to determine the changes of cellular antioxidant defense system, antioxidant enzymes such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were measured in pancreatic homogenates. Moreover we also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, if there is an imbalance between oxidant and antioxidant status. Pancreatic beta-cells were examined by immunohistochemical methods. STZ induced a significant increase lipid peroxidation, serum NO concentrations and decreased the antioxidant enzyme activity. Erythrocyte MDA, serum NO and pancreatic tissue MDA significantly increased (P < 0.05) and also the antioxidant levels significantly decreased (P < 0.05) in diabetic group. QE treatment significantly decreased the elevated MDA and NO (P < 0.05), and also increased the antioxidant enzyme activities (P < 0.05). QE treatment has shown protective effect possibly through decreasing lipid peroxidation, NO production and increasing antioxidant enzyme activity. Islet cells degeneration and weak insulin immunohistochemical staining was observed in STZ induced diabetic rats. Increased staining of insulin and preservation of islet cells were apparent in the QE-treated diabetic rats. These findings suggest that QE treatment has protective effect in diabetes by decreasing oxidative stress and preservation of pancreatic beta-cell integrity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ghrelin Suppresses Glucose-Stimulated Insulin Secretion and Deteriorates Glucose Tolerance in Healthy Humans

              OBJECTIVE The orexigenic gut hormone ghrelin and its receptor are present in pancreatic islets. Although ghrelin reduces insulin secretion in rodents, its effect on insulin secretion in humans has not been established. The goal of this study was to test the hypothesis that circulating ghrelin suppresses glucose-stimulated insulin secretion in healthy subjects. RESEARCH DESIGN AND METHODS Ghrelin (0.3, 0.9 and 1.5 nmol/kg/h) or saline was infused for more than 65 min in 12 healthy patients (8 male/4 female) on 4 separate occasions in a counterbalanced fashion. An intravenous glucose tolerance test was performed during steady state plasma ghrelin levels. The acute insulin response to intravenous glucose (AIRg) was calculated from plasma insulin concentrations between 2 and 10 min after the glucose bolus. Intravenous glucose tolerance was measured as the glucose disappearance constant (Kg) from 10 to 30 min. RESULTS The three ghrelin infusions raised plasma total ghrelin concentrations to 4-, 15-, and 23-fold above the fasting level, respectively. Ghrelin infusion did not alter fasting plasma insulin or glucose, but compared with saline, the 0.3, 0.9, and 1.5 nmol/kg/h doses decreased AIRg (2,152 ± 448 vs. 1,478 ± 2,889, 1,419 ± 275, and 1,120 ± 174 pmol/l) and Kg (0.3 and 1.5 nmol/kg/h doses only) significantly (P < 0.05 for all). Ghrelin infusion raised plasma growth hormone and serum cortisol concentrations significantly (P < 0.001 for both), but had no effect on glucagon, epinephrine, or norepinephrine levels (P = 0.44, 0.74, and 0.48, respectively). CONCLUSIONS This is a robust proof-of-concept study showing that exogenous ghrelin reduces glucose-stimulated insulin secretion and glucose disappearance in healthy humans. Our findings raise the possibility that endogenous ghrelin has a role in physiologic insulin secretion, and that ghrelin antagonists could improve β-cell function.
                Bookmark

                Author and article information

                Journal
                nh
                Nutrición Hospitalaria
                Nutr. Hosp.
                Grupo Arán (Madrid, Madrid, Spain )
                0212-1611
                1699-5198
                June 2021
                : 38
                : 3
                : 585-591
                Affiliations
                [2] Granada Andalucía orgnameUniversidad de Granada orgdiv1Programa de Doctorado Medicina Clínica y Salud Pública Spain
                [3] Granada Andalucía orgnameUniversidad de Granada orgdiv1Instituto de Nutrición y Tecnología de los Alimentos "José Mataix" Spain
                [4] Granada Andalucía orgnameUniversidad de Granada orgdiv1Departmento de Fisiología Spain
                [1] Granada Andalucía orgnameUniversidad de Granada orgdiv1Facultad de Odontología orgdiv2Departamento de Estomatología Spain
                Article
                S0212-16112021000300585 S0212-1611(21)03800300585
                10.20960/nh.03438
                296f9bef-21db-4dd0-9bc6-281e53a90fb1

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                History
                : 14 December 2020
                : 11 November 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 38, Pages: 7
                Product

                SciELO Spain

                Categories
                Trabajos Originales

                Masa magra,Tejido adiposo,Composición corporal,Peso corporal,Propóleo,Mineral metabolism,Lean mass,Adipose tissue,Body weight,Propolis,Metabolismo mineral,Body composition

                Comments

                Comment on this article