5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination of Metformin, Sodium Oxamate and Doxorubicin Induces Apoptosis and Autophagy in Colorectal Cancer Cells via Downregulation HIF-1α

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide in both sexes. Current therapies include surgery, chemotherapy, and targeted therapy; however, prolonged exposure to chemical agents induces toxicity in patients and drug resistance. So, we implemented a therapeutic strategy based on the combination of doxorubicin, metformin, and sodium oxamate called triple therapy (Tt). We found that Tt significantly reduced proliferation by inhibiting the mTOR/AKT pathway and promoted apoptosis and autophagy in CRC derived cells compared with doxorubicin. Several autophagy genes were assessed by western blot; ULK1, ATG4, and LC3 II were overexpressed by Tt. Interestingly, ULK1 was the only one autophagy-related protein gradually overexpressed during Tt administration. Thus, we assumed that there was a post-transcriptional mechanism mediating by microRNAs that regulate UKL1 expression during autophagy activation. Through bioinformatics approaches, we ascertained that ULK1 could be targeted by mir-26a, which is overexpressed in advanced stages of CRC. In vitro experiments revealed that overexpression of mir-26a decreased significantly ULK1, mRNA, and protein expression. Contrariwise, the Tt recovered ULK1 expression by mir-26a decrease. Due to triple therapy repressed mir-26a expression, we hypothesized this drug combination could be involved in mir-26a transcription regulation. Consequently, we analyzed the mir-26a promoter sequence and found two HIF-1α transcription factor recognition sites. We developed two different HIF-1α stabilization models. Both showed mir-26a overexpression and ULK1 reduction in hypoxic conditions. Immunoprecipitation experiments were performed and HIF-1α enrichment was observed in mir-26a promoter. Surprisingly, Tt diminished HIF-1α detection and restored ULK1 mRNA expression. These results reveal an important regulation mechanism controlled by the signaling that activates HIF-1α and that in turn regulates mir-26a transcription.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Predicting effective microRNA target sites in mammalian mRNAs

          MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks. DOI: http://dx.doi.org/10.7554/eLife.05005.001
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data

            Although microRNAs (miRNAs), other non-coding RNAs (ncRNAs) (e.g. lncRNAs, pseudogenes and circRNAs) and competing endogenous RNAs (ceRNAs) have been implicated in cell-fate determination and in various human diseases, surprisingly little is known about the regulatory interaction networks among the multiple classes of RNAs. In this study, we developed starBase v2.0 (http://starbase.sysu.edu.cn/) to systematically identify the RNA–RNA and protein–RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data sets generated by 37 independent studies. By analyzing millions of RNA-binding protein binding sites, we identified ∼9000 miRNA-circRNA, 16 000 miRNA-pseudogene and 285 000 protein–RNA regulatory relationships. Moreover, starBase v2.0 has been updated to provide the most comprehensive CLIP-Seq experimentally supported miRNA-mRNA and miRNA-lncRNA interaction networks to date. We identified ∼10 000 ceRNA pairs from CLIP-supported miRNA target sites. By combining 13 functional genomic annotations, we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. Finally, we developed interactive web implementations to provide visualization, analysis and downloading of the aforementioned large-scale data sets. This study will greatly expand our understanding of ncRNA functions and their coordinated regulatory networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-eating and self-killing: crosstalk between autophagy and apoptosis.

              The functional relationship between apoptosis ('self-killing') and autophagy ('self-eating') is complex in the sense that, under certain circumstances, autophagy constitutes a stress adaptation that avoids cell death (and suppresses apoptosis), whereas in other cellular settings, it constitutes an alternative cell-death pathway. Autophagy and apoptosis may be triggered by common upstream signals, and sometimes this results in combined autophagy and apoptosis; in other instances, the cell switches between the two responses in a mutually exclusive manner. On a molecular level, this means that the apoptotic and autophagic response machineries share common pathways that either link or polarize the cellular responses.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/851765
                URI : https://loop.frontiersin.org/people/1121437
                URI : https://loop.frontiersin.org/people/109180
                URI : https://loop.frontiersin.org/people/667429
                URI : https://loop.frontiersin.org/people/1134231
                URI : https://loop.frontiersin.org/people/670708
                URI : https://loop.frontiersin.org/people/673846
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                26 May 2021
                2021
                : 11
                : 594200
                Affiliations
                [1] 1 Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM , Tlalnepantla, Mexico
                [2] 2 Laboratorio de Genómica, Instituto Nacional de Cancerología , Tlalpan, Mexico
                [3] 3 INCMNSZ, Unidad de Bioquímica , Tlalpan, Mexico
                [4] 4 Laboratorio de Toxicología, Unidad de Biomedicina, FES-IZTACALA, UNAM , Tlalnepantla, Mexico
                Author notes

                Edited by: Gerardo Leyva-Gómez, National Autonomous University of Mexico, Mexico

                Reviewed by: Jun Ren, University of Washington, United States; Youlang Zhou, Affiliated Hospital of Nantong University, China

                *Correspondence: Carlos Pérez-Plasencia, carlos.pplas@ 123456gmail.com

                †These authors have contributed equally to this work

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.594200
                8187873
                34123772
                2970100e-802c-4e82-9cf0-902ad16c2858
                Copyright © 2021 Coronel-Hernández, Salgado-García, Cantú-De León, Jacobo-Herrera, Millan-Catalan, Delgado-Waldo, Campos-Parra, Rodríguez-Morales, Delgado-Buenrostro and Pérez-Plasencia

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 August 2020
                : 30 April 2021
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 78, Pages: 13, Words: 5694
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                hif-1α,autophagy,ulk1,mir-26a,akt,proliferation
                Oncology & Radiotherapy
                hif-1α, autophagy, ulk1, mir-26a, akt, proliferation

                Comments

                Comment on this article